K.-J. CHUNG KODAI MATH. J. 7 (1984), 208–210

ON STRONG NORMALITIES

By KUN-JEN CHUNG

In the paper [1], the author asks for an example in a complete K-metric space where K is a strongly normal cone of a reflexive infinite dimensional Banach space. Our main purpose is to present such an example.

Let V be a normed space. A set $K \subset V$ is said to be a cone if and only if (1) K is closed;

(2) If $u, v \in K$, then $au + bv \in K$ for all $a, b \ge 0$;

- (3) $K \cap (-K) = \{\theta\}$ where θ is the zero of the space V, and
- (4) $K^{0} = \emptyset$ where K^{0} is the interior of K.

We say $u \ge v$ if and only if $u - v \in K$. The cone K is said to be strongly normal if there is c > 0 such that if $z = \sum_{i=1}^{n} b_i x_i$, $x_i \in K$, $||x_i|| = 1$, $\sum_{i=1}^{n} b_i = 1$, $b_i \ge 0$ implies ||z|| > c. The mapping $\phi: K \to K$ is said to be lower semicontinuous if $\{u_n\}$ and $\{\phi(u_n)\}$ are both weakly convergent, then $\lim \phi(u_n) \ge \phi(\lim u_n)$. In a finite dimensional space, the weak topology and the strong topology are same, but, in an infinite dimensional space, they are different. Therefore if we can get an example in a complete K-metric space where K is a strongly normal cone of a reflexive infinite dimensional Banach space, the above definition of the lower semicontinuity will be more significant; we also generalize the value of K-metric d(x, y) to an infinite dimensional space and improve [1, 2].

From now on, we assume that $(V, \langle \cdot, \cdot \rangle)$ is an inner product space over R (all real numbers). $\langle \cdot, \cdot \rangle$ is an inner product on V, and $||x|| = \langle x, x \rangle^{1/2}$, $x \in V$.

LEMMA 1 (Parallelogram Identity [4]). Let V be an inner product space over R. Then

$$||x+y||^2 + ||x-y||^2 = 2||x||^2 + 2||y||^2$$
 (x, $y \in V$).

LEMMA 2 (Polarization Identity [4]). Let V be an inner product space over R. Then

$$\langle x, y \rangle = \left\| \frac{x+y}{2} \right\|^2 - \left\| \frac{x-y}{2} \right\|^2 \quad (x, y \in V).$$

Remark. Let 0 < c < 1. From Lemma 1, if $||x - y|| \le c$, ||x|| = 1, and ||y|| = 1.

Received May 25, 1983