ON A CLASSIFICATION OF PLANE DOMAINS FOR BMOA

Dedicated to Professor Mitsuru Ozawa on the occasion of his 60th birthday

By shōji Kobayashi

1. Introduction. The space BMOA is one which lies between the space AB of bounded analytic functions and the Hardy class H_p for any p>0. In this paper we are concerned with BMOA for general domains and investigate the inclusion relations among the null classes O_{AB} , O_{BMOA} and O_p of plane domains corresponding to these spaces.

The space BMO of functions of bounded mean oscillation was first introduced by John and Nirenberg [7], in the context of functions defied in \mathbb{R}^n . Since then several people [1, 3, 5] investigated the space in various contexts and noticed that BMO has deep connections with conjugate harmonic functions and the dual of Hardy class H_1 . We state the definition of BMO for functions defined on the unit circle T. Let u be an integrable function on T and I be a subarc of T. We denote by u_1 the average of u over I, that is,

$$u_I = \frac{1}{|I|} \int_I u(e^{it}) dt ,$$

where |I| denotes the Lebesgue measure of I. We say that u is of bounded mean oscillation, $u \in BMO$, if

$$\sup_{I} \frac{1}{|I|} \int_{I} |u(e^{it}) - u_{I}| dt < +\infty,$$

where the supremum is taken over all subarcs $I \subset T$. We denote by BMOA the set of functions in BMO whose Poisson extensions to the unit disc D are analytic. It is known that BMOA can be defined in an equivalent way which makes it conformally invariant.

Let f be an analytic function in D. We use the following notations:

$$||f||_p = \sup_{0 \le r \le 1} \left(\frac{1}{2\pi} \int_0^{2\pi} |f(re^{i\theta})|^p d\theta \right)^{1/p}, \quad 0$$

(1.1)
$$H_p(D) = \{f : f \text{ is analytic in } D \text{ and } ||f||_p < +\infty \},$$

and

$$T(f) \! = \! \sup_{0 < r < 1} \frac{1}{2\pi} \! \int_0^{2\pi} \! \log^+ \! |\, f(re^{i\,\theta}) \, |\, d\,\theta \; .$$

Received March 31, 1983