COADJOINT EQUIVARIANCY OF MOMENTUM MAPPING

By Kentaro Mikami

1. A coadjoint orbit of a Lie group G is a G-homogeneous symplectic manifold with the inclusion map as the coadjoint equivariant momentum mapping. If (M, Ω) is a G-homogeneous symplectic manifold with the coadjoint equivariant momentum mapping, then the coadjoint equivariant momentum mapping gives a symplectic covering mapping onto a coadjoint orbit. And we have a result of B. Kostant which classifies the (simply connected) homogeneous symplectic manifolds with coadjoint equivariant momentum mappings (cf. [1], [2], [5]). An action with a fixed point may be considered to be antipodal with a homogeneous action. As explained in [4], we have some theorems concerning with the existence of (coadjoint equivariant) momentum mappings. In particular, the following three guarantee the coadjoint equivariancy of a momentum mapping:
(1) $H^{2}(\mathrm{~g}, R)=0$, where g is the Lie algebra of G (cf. [4], [5], [6]),
(2) the symplectic form is an exact form of a G-invariant 1 -form (cf. [1]), and
(3) G is a semidirect product of G_{1} by G_{2}, where G_{1} and G_{2} have coadjoint equivariant momentum mappings, $H^{1}\left(g_{1}, R\right)=0$ and G_{1} is connected (cf. [3], [4]).

In this paper, we give a condition for the coadjoint equivariancy of momentum mappings. The result is

Proposition. Let (M, Ω) be a connected symplectıc manifold, and let G be a symplectic action on (M, Ω) with a momentum mapping. If the action G has a fixed point, then G has a coadjoint equivariant momentum mapping.
2. Let (M, Ω) be a connected symplectic manifold, that is, M is a connected smooth manifold with a non-degenerate closed 2 -form Ω. Ω induces a bundle isomorphism $\Omega^{b}: T M \rightarrow T * M$ between the tangent bundle and the cotangent bundle of M defined by

$$
\Omega^{\mathrm{b}}(v)=v \perp \Omega .
$$

Denote the inverse of Ω^{b} by $\Omega^{\#}$. $\Omega^{\#}: T^{*} M \rightarrow T M$ is also a bundle isomorphism. Let $C^{\infty}(M)(\operatorname{resp}$ aut (M, Ω)) be the set of all real valued smooth functions (resp. Hamiltonian vector fields i.e., vector field X satisfying $L_{X} \Omega=0$) on M.

For each $f \in C^{\infty}(M)$, define $\beta(f)$ by

