K. MIKAMI KODAI MATH. J. 6 (1983), 193–197

COADJOINT EQUIVARIANCY OF MOMENTUM MAPPING

By Kentaro Mikami

1. A coadjoint orbit of a Lie group G is a G-homogeneous symplectic manifold with the inclusion map as the coadjoint equivariant momentum mapping. If (M, \mathcal{Q}) is a G-homogeneous symplectic manifold with the coadjoint equivariant momentum mapping, then the coadjoint equivariant momentum mapping gives a symplectic covering mapping onto a coadjoint orbit. And we have a result of B. Kostant which classifies the (simply connected) homogeneous symplectic manifolds with coadjoint equivariant momentum mappings (cf. [1], [2], [5]). An action with a fixed point may be considered to be antipodal with a homogeneous action. As explained in [4], we have some theorems concerning with the existence of (coadjoint equivariant) momentum mappings. In particular, the following three guarantee the coadjoint equivariancy of a momentum mapping:

(1) $H^2(\mathfrak{g}, R)=0$, where \mathfrak{g} is the Lie algebra of G (cf. [4], [5], [6]),

(2) the symplectic form is an exact form of a G-invariant 1-form (cf. [1]), and

(3) G is a semidirect product of G_1 by G_2 , where G_1 and G_2 have coadjoint equivariant momentum mappings, $H^1(\mathfrak{g}_1, R)=0$ and G_1 is connected (cf. [3], [4]).

In this paper, we give a condition for the coadjoint equivariancy of momentum mappings. The result is

PROPOSITION. Let (M, Ω) be a connected symplectic manifold, and let G be a symplectic action on (M, Ω) with a momentum mapping. If the action G has a fixed point, then G has a coadjoint equivariant momentum mapping.

2. Let (M, Ω) be a connected symplectic manifold, that is, M is a connected smooth manifold with a non-degenerate closed 2-form Ω . Ω induces a bundle isomorphism $\Omega^{\flat}: TM \to T^*M$ between the tangent bundle and the cotangent bundle of M defined by

$$\Omega^{\flat}(v) = v \sqcup \Omega$$
.

Denote the inverse of Ω^{\flat} by Ω^* . $\Omega^*: T^*M \to TM$ is also a bundle isomorphism. Let $C^{\infty}(M)$ (resp. aut (M, Ω)) be the set of all real valued smooth functions (resp. Hamiltonian vector fields i.e., vector field X satisfying $L_X \Omega = 0$) on M.

For each $f \in C^{\infty}(M)$, define $\beta(f)$ by

Received August 24, 1982