COMPLEX ALMOST CONTACT MANIFOLDS

By Shigeru Ishimara and Mariko Konishi

§ 1. Introduction.

A complex contact manifold is a complex manifold of odd dimensions $2 m+1$ ($\geqq 3$) covered by an open covering $\mathcal{A}=\left\{O, O^{\prime}, \cdots\right\}$ consisting of coordinate neighborhoods in such a way that

1) In each $O \in \mathcal{A}$ there is a holomorphic 1-form w satisfying $w \wedge(d w)^{m} \neq 0$ at every point of O;
2) If $O \cap O^{\prime} \neq \phi\left(O, O^{\prime} \in \mathcal{A}\right)$, there is a non-vanshing holomorphic function λ in $O \cap O^{\prime}$ such that $w^{\prime}=\lambda w$ in $O \cap O^{\prime}$, where w^{\prime} is the holomorphic 1-form given in O^{\prime} (See Kobayashi [3]).

In a previous paper [2] we have studied complex contact structure $\{(O, w) \mid O$ $\in \mathcal{A}\}$ which are induced by fiberings of manifolds with (real) normal contact 3structure and obtained the induced (local) tensor field G of type (1,1) in each $O \in \mathcal{A}$ such that $G^{2}=-I+w \otimes W, w \cdot G=0$, where W is the associated vector field of w. The local structures $\{(O, G, w, W) \mid O \in \mathcal{A}\}$ are very useful to study curvature properties in the same way as in the real case (See Gray [1]. and Sasaki [4]). In the present paper we first define a system of local structures $\{(O, u, G) \mid O \in \mathcal{A}\}$ which will be called a complex almost contact structure and next show that such a structure induces a complex contact structure defined by Kobayashi [3], when it satisfies a suitable condition, i.e., to be normal.

The authors wish to express their thanks to Professor J.S. Park for his valuable suggestions and remarks.

§ 2. Complex almost contact structure.

Let M be a complex manifold with complex structure F and Hermitian metric g and be covered by an open covering $\mathcal{A}=\left\{O, O^{\prime}, \cdots\right\}$ consisting of coordinate neighborhoods. Then M is called a Complex almost contact manifold if the following conditions 1) and 2) are satisfied:

1) In each $O \in \mathcal{A}$ there are given a 1 -form u and a tensor field G of type $(1,1)$ such that*)
[^0]
[^0]: Received July 23, 1979
 ${ }^{*)}$ Functions vector fields, tensor fields and geometric objects we consider are assumed to be differentiable and of class C^{∞}, otherwise stated. Throughout this paper, X, Y and Z denote arbitrary vector fields in M.

