ON THE RATIONAL POINTS OF SOME JACOBIAN
 VARIETIES OVER LARGE ALGEBRAIC NUMBER FIELDS

By Hideo Imai

In this note we shall prove the following: Let X be a hyperelliptic curve defined over the rational number field \boldsymbol{Q} and let J be its Jacobian variety. Let L be the field generated by all square roots of rational integers over \boldsymbol{Q}. Then the group of L-rational points $J(L)$ has an infinite rank over the rational integer ring \boldsymbol{Z}.

In Frey and Jarden [1], the following is conjectured: Let A be an abelian variety defined over \boldsymbol{Q} and $\boldsymbol{Q}_{a b}$ the maximal abelian extension of \boldsymbol{Q}. Then does the group $A\left(\boldsymbol{Q}_{a b}\right)$ have an infinite rank over \boldsymbol{Z} ? Our result supports this conjecture partially.

1. Let X be a hyperelliptic curve defined by the equation (in the affine form) $y^{2}=f(x)$, where $f(x)$ is a monic separable polynomial of degree $2 g+1$ with coefficients in \boldsymbol{Z}. Let $P_{0}=(\infty, \infty)$ be the point at infinity on X, which is rational over \boldsymbol{Q}. Let $z=x^{g} / y$ be a local uniformizing parameter at P_{0}. Let $\omega_{i}=x^{2-1} d x / y(i=1,2, \cdots, g)$ be the canonical base of the space of differential forms of the first kind on X. Writing these ω_{i} in terms of z and integrating ω_{i} formally, we get power series $\Psi_{i}(z) \in \boldsymbol{Q}[[z]]$ such that $\Psi_{i}(0)=(0)$ and $\omega_{i}=d \Psi_{i}$.

Lemma 1.

$$
\Psi_{i}(z)=\frac{-2}{2 g-2 \imath+1} z^{2 g-2 \imath+1}+\sum_{n>8-\imath} \frac{c_{n}^{(i)}}{2 n+1} z^{2 n+1} \quad \text { with } \quad c_{n}^{(i)} \in \boldsymbol{Z} .
$$

Proof. It is easily proved by direct computation. We outline the proof. Differentiating $z=x^{g} / y$ with respect to x, we have

$$
d z=\left(g x^{g-1}-x^{g} f^{\prime}(x) / 2 f(x)\right) d x / y
$$

Hence we have

$$
\Psi_{i}^{\prime}(z)=1 / g x^{g-\imath}\left(1-x f^{\prime}(x) / 2 g f(x)\right)
$$

We write $z=x^{g} / \sqrt{\bar{f}(x)}$ and expand the above equation in terms of $t=1 / x$. Let $\Psi_{i}(z)=\sum_{n=1}^{\infty} a_{n} z^{n}$ and let $h(1 / x)=f(x) / x^{2 g+1}-1$. After some computations we get

