COEFFICIENTS OF INVERSES OF UNIVALENT FUNCTIONS WITH QUASICONFORMAL EXTENSIONS

BY GLENN SCHOBER

§1. Introduction.

Let Σ' denote the family of univalent functions

$$g(z) = z + \sum_{n=1}^{\infty} \frac{b_n}{z^n}$$

in $\tilde{\mathcal{A}} = \{z : 1 < |z| < \infty\}$. For $0 \leq k < 1$ let Σ'_k be the family of functions in Σ' that admit k-quasiconformal extensions to $\bar{\mathcal{A}} = \{z : |z| \leq 1\}$. That is, each $g \in \Sigma'_k$ has a homeomorphic extension to $\bar{\mathcal{A}}$, that is absolutely continuous on a.e. horizontal and vertical line in $\bar{\mathcal{A}}$ and satisfies

$$|g_{\bar{z}}| \leq k |g_z|$$
 a.e. in \bar{A} .

If k=0, then g is an entire univalent function. Consequently, Σ'_0 contains only the identity function. As $k \to 1$, the families Σ'_k are dense in Σ' , and we therefore define $\Sigma'_1=\Sigma'$. Since $\Sigma'_{k_1}\subset \Sigma'_{k_2}$ for $k_1 < k_2$, the families Σ'_k interpolate in a monotonic fashion from the identity function to the family Σ' .

R. Kühnau [2] and O. Lehto [5] have obtained the sharp coefficient estimates

$$|b_1| \leq k \quad \text{and} \quad |b_2| \leq (2/3)k$$

for functions $g \in \Sigma'_k$. In this article we shall study the coefficients of their inverse functions.

That is, if G is the inverse of a function g in Σ'_k , i.e., $G=g^{-1}$, then G has an expansion

$$G(w) = w + \sum_{n=1}^{\infty} \frac{B_n}{w^n}$$

in some neighborhood of $w = \infty$. Since $B_1 = -b_1$ and $B_2 = -b_2$, the sharp estimates

$$|B_1| \leq k \quad \text{and} \quad |B_2| \leq (2/3)k$$

This work was supported in part by a grant from the National Science Foundation. Received July 26, 1978