UNICITY THEOREMS FOR ENTIRE FUNCTIONS CONCERNING FOUR SMALL FUNCTIONS

Hong-Xun Yi

Abstract

This paper studies the problem of uniqueness of entire functions concerning four small functions and shows that if two entire functions f and g satisfy $\bar{E}\left(a_{j}, k, f\right)=$ $\bar{E}\left(a_{j}, k, g\right)$ for $j=1,2,3,4$, where a_{j} are four distinct small functions with respect to f and g, and k is a positive integer or ∞ with $k \geq 8$, then $f \equiv g$.

1. Introduction and main result

In this paper, by meromorphic function we shall always mean a meromorphic function in the complex plane \boldsymbol{C}. We adopt the standard notations in the Nevanlinna theory of meromorphic functions as explained in [1]. For any nonconstant meromorphic function $f(z)$, we denote by $S(r, f)$ any quantity satisfying $S(r, f)=o(T(r, f))$ as $r \rightarrow \infty$ except possibly for a set of r of finite linear measure. A meromorphic function $a(z)$ is called a small function with respect to $f(z)$ if $T(r, a)=S(r, f)$. Let $S(f)$ be the set of meromorphic functions in the complex plane \boldsymbol{C} which are small functions with respect to f. Note that $\boldsymbol{C} \in S(f)$ and $S(f)$ is a field (see [2]).

Let $f(z)$ be a nonconstant entire function, $a(z) \in S(f)$, and let k be a positive integer or ∞. We denote by $\bar{E}(a, k, f)$ the set of distinct zeros of $f(z)-a(z)$ with multiplicities $\leq k$ (see [3]). In particular, we denote by $\bar{E}(a, \infty, f)$ the set of distinct zeros of $f(z)-a(z)$.

Let $f(z)$ and $g(z)$ be nonconstant entire functions and let $a(z) \in S(f) \cap$ $S(g)$. We denote by $\bar{N}_{0}(r, a, f, g)$ the counting function of common zeros of $f(z)-a(z)=0$ and $g(z)-a(z)=0$ (ignoring multiplicities), each point counted only once. Let

$$
\begin{equation*}
\bar{N}_{12}(r, a, f, g):=\bar{N}(r, a, f)+\bar{N}(r, a, g)-2 \bar{N}_{0}(r, a, f, g), \tag{1.1}
\end{equation*}
$$

then $\bar{N}_{12}(r, a, f, g)$ denotes the counting function of different solutions to $f(z)-$ $a(z)=0$ and $g(z)-a(z)=0$. Set

[^0]
[^0]: 2000 Mathematics Subject Classification: 30D35, 30D20.
 Key words and phrases: Entire function, small function, unicity theorem.
 Project supported by the NSFC (No. 19871050) and the RFDP (No. 98042209).
 Received September 21, 2000; revised April 16, 2001.

