THE REAL PART OF DECOMPOSITION OF A POLYNOMIAL AND ITS DETERMINACY

By Zhang Guobin and Sun Wei-Zhi

1. Introduction

Let $f(x, y), g(x, y):\left(\mathbb{R}^{2}, 0\right) \rightarrow(\mathbb{R}, 0)$ be two C^{∞} function-germs. Germs f and g are called to be r-jet equivalent if at $(0,0)$, their derivatives of degree not greater than r are identical. Denote this fact by $j^{r}(f)=j^{r}(g)$. Germ f is called to be $C^{0}-r$ determined if for each germ g with $j^{r}(f)=j^{r}(g)$, there exists a germ of homeomorphism $h:\left(\mathbb{R}^{2}, 0\right) \rightarrow\left(\mathbb{R}^{2}, 0\right)$ such that $f \circ h=g . f$ is called to be C^{0}-finitely-determined if it is C^{0}-r-determined for some r. The degree of C^{0}-determinacy of f is the least number such that f is $C^{0}-r$-determined.

Germs f and g are called to be V-equivalent if germs $f^{-1}(0)$ and $g^{-1}(0)$ are homeomorphic.

Let $P_{0}(n, k ; \mathbb{R})$ denote the set of topological equivalence classes of germs of real polynomials in n variables of degree $\leq k$, and $P_{0}(n, \mathbb{R})$ the set of those classes for all k. T. Fukuda [1] proved the Thom's conjecture: $P_{0}(n, k ; \mathbb{R})$ is a finite set. How about $P_{0}(n ; \mathbb{R})$? It is easy to see that $P_{0}(1 ; \mathbb{R})$ contains only three elements. For example, the germs $y=x^{2}$ and $y=x^{4}$ are C^{0}-equivalent (V.I. Arnol'd etc. [2], p. 12). In general, $y=x^{2 m}$ and $y=x^{2 n}$ belong to be the same class, and $y=x^{2 m+1}$ and $y=x^{2 n+1}$ belong to be the another class.

2. Homogeneous case

Let $P(x, y)$ be a germ of a real homogeneous polynomial of degree k. Then

$$
P(x, y)=a\left(x-b_{1} y\right) \cdots\left(x-b_{s} y\right)\left(x-c_{1} y\right) \cdots\left(x-c_{m} y\right)
$$

where $a, b_{i} \in \mathbb{R}, a \neq 0, c_{j} \in \mathbb{C}$. We have the following.
Theorem 1. $\quad P(x, y)$ is C^{0}-finttely determined if and only if $b_{i} \neq b_{j}$ for $i \neq j$. In thes case, the degree of C^{0}-determinacy of $P \imath s k$.

Theorem 2. Homogeneous polynomial-germs $P(x, y)$ and $Q(x, y)$ are V-equivalent ıf and only if they have the same number of real factors (do not account the repeated number, if $b_{i}=b_{j}$ for some i, j).

Remark. The degrees of P and Q may be unequal when they are V-equivalent.

