J. Math. Soc. Japan Vol. 49, No. 1, 1997

On the essential spectrum of the Laplacian on complete manifolds

By Hironori KUMURA

(Received Dec. 9, 1994)

1. Introduction.

The Laplace-Beltrami operator Δ on a noncompact complete Riemannian manifold M is essentially self-adjoint on $C_0^{\infty}(M)$, and the spectrum of its self-adjoint extension to $L^2(M)$ has been studied by several authors from various points of view. For instance, Donnelly [6] proved that the essential spectrum $\sigma_{ess}(-\Delta)$ of $-\Delta$ is equal to $[(n-1)^2k^2/4, \infty)$ if M is an n-dimensional Hadamard manifold whose sectional curvatures approach a constant $-k^2$ at infinity. On the other hand, Escobar and Freire [5] consider the case M has nonnegative sectional curvatures and showed that $\sigma_{ess}(-\Delta)=[0,\infty)$, if M possesses a soul S such that the normal exponential map $\exp_{s}^{\perp}: NS \to M$ induces a diffeomorphism, and further if either dim M=2, or dim $M \ge 3$ and $\int_{1}^{\infty} (1/v(t)) \left[\int_{S_t} \operatorname{Ric}(\nabla r) \right] dt < \infty$, where NS is the normal bundle to S, $r(x)=\operatorname{dist}(x, S)$, $S_t=\{x \in M | \operatorname{dist}(x, S)=t\}$, and v(t) denotes the volume of S_t . Recently Li [10] proved that if M has nonnegative Ricci curvatures and possesses a pole (i.e., a point $x \in M$ where the exponential map $\exp_x: T_x M \to M$ induces a diffeomorphism), then $\sigma_{ess}(-\Delta)$ is equal to $[0, \infty)$.

In this paper, we shall show the following:

THEOREM 1.1. Let M be a noncompact complete Riemannian manifold of dimension n. Suppose there exists an open subset U of M with compact smooth boundary ∂U such that the outward-pointing normal exponential map $\exp_{\partial U}^{\pm}$: $N^{+}(\partial U) \rightarrow M - \overline{U}$ induces a diffeomorphism. Let $\varphi : [0, \infty) \rightarrow [0, \infty)$ be a continuous function satisfying

$$\operatorname{Ric}_{\boldsymbol{M}}(\boldsymbol{\gamma}'_{\boldsymbol{x}}(t), \boldsymbol{\gamma}'_{\boldsymbol{x}}(t)) \geq -(n-1)\varphi(t),$$

for all $t \ge 0$ and $x \in \partial U$, where $\gamma_x(t) = \exp_x(t \cdot \vec{n}(x))$ and \vec{n} stands for the outward unit normal vector field on ∂U . Then the spectrum $\sigma(-\Delta)$ of $-\Delta$ is equal to $[0, \infty)$, provided that $\varphi(t)$ converges to zero as $t \to \infty$.

This is a generalization of the results by Escobar and Freire, and also Li mentioned above, and it will be deduced from a comparison argument and the following