Buekenhout geometries of rank 3 which involve the Petersen graph

By Thomas Meixner

(Received Oct. 5, 1993)
(Revised Sept. 9, 1994)

1. Introduction.

Consider the diagram $\left(c^{*} \cdot P\right):{ }^{\circ} \stackrel{P}{-}$.
Here, the symbol ${ }^{c}-$ stands for the circle geometry with 4 points and \xrightarrow{P} for the geometry of the Petersen graph. We will determine all simply connected geometries \underline{G} with this diagram and flag-transitive automorphism group. It will turn out that there are exactly five simply connected ones. One of them is related to the alternating group of degree 6 , two of them are related to the Mathieu groups M_{11} and M_{12}, all these three are finite.

One is related to the symmetric group of degree 9 and to the sporadic group He , and one to the group $S O_{5}(5)$, and we do not know, whether they are finite or infinite.

To be precise, we will prove the following theorem.
Theorem. Let \underline{G} be a connected, simply connected geometry with diagram ($c^{*} \cdot P$) and flag-transitive automorphism group G. Then \underline{G} is one of the geometries $\underline{G}_{6}, G_{6}, G_{9}, \underline{G}_{11}$ or G_{12} defined in the next section, and G is isomorphic to one of the groups $G_{6 a}, G_{6 b}$ (if G is G_{6}), or G_{11} (if \underline{G} is G_{11}), or $G_{12 a}, G_{12 b}, G_{12 c}, G_{12 d}$, $G_{12 e}$ (if \underline{G} is \underline{G}_{12}), or $G_{9 a}, G_{9 b}$ (if \underline{G} is \underline{G}_{9}), or $G_{5 a}, G_{5 b}$ (if \underline{G} is $\underline{\underline{G}}_{5}$), all defined in the last section, respectively.

Here, G_{11} is a geometry with 66 points and automorphism group $G_{11}=M_{11}$, G_{12} is a geometry with 4752 points and automorphism group $G_{12 d}$ (resp. $\left.G_{12 e}\right)=$ $\left(A_{4} \times M_{12}\right) 2$ and projects onto a geometry for M_{12}, G_{6} is a geometry with 6480 points and automorphism group $G_{66}=3\left(A_{6} \times A_{6}\right) 2$, while we do not know, whether the geometries \underline{G}_{5} and G_{9} are finite or infinite. They project onto finite geometries for $S O_{5}(5)$ and Σ_{9} respectively and have automorphism groups $G_{5 b}$ and $G_{9 b}$ respectively.

The remark on the automorphism groups of the examples is almost trivial: the pairs $(\underline{G}, \operatorname{Aut}(\underline{\underline{G}}))$ have to appear in the list, hence one has only to check in every case, which of the groups acting on the same geometry \underline{G} is the "biggest one".

