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1. Introduction, Theorems.

For the pair of Schr\"odinger operators $H_{0}=D_{1}^{2}+\cdots+D_{m}^{2}$ and $H=H_{0}+V$ ,
where $D_{j}=-i\partial/\partial x_{j},$ $j=1,$ $\cdots$ , $m$ , and $V$ is the multiplication operator with the
real valued function $V(x)$ , the wave operators $W_{\pm}=W_{\pm}(H, H_{0})$ are defined by

$W_{\pm}=s- \lim_{tarrow\pm\infty}e^{itH}e^{-itH_{0}}$ , (1.1)

where $s$ –indicates the strong limit in $L^{2}(R^{m})$ . In this paper, we prove under
suitable conditions on $V(x)$ that $W_{\pm}$ are bounded in the Sobolev spaces $W^{k.p}(R^{m})$

for any 1S $p\leqq\infty$ and $k=0,1,$ $\cdots$ , 1. The merit of the wave operators is that
they intertwine the part $H_{c}$ of $H$ on the continuous spectral subspace $L_{c}^{2}(H)$

and $H_{0}$ : $H_{c}=W_{\pm}H_{0}W_{\pm}^{*}$ on $LZ(H)$ . Hence the $W^{k.p}(R^{m})$-boundedness of $W_{\pm}$ implies
that the functions $f(H_{0})$ and $f(H)P_{c}(H),$ $P_{c}(H)$ being the orthogonal projection
onto $Lg(H)$ , have equivalent operator norms from $W^{k,p}(R^{m})$ to $W^{k’,q}(R^{m})$ for any
$1\leqq p,$ $q\leqq\infty$ and $k,$ $k’=0,1,$ $\cdots$ , $l$ :

$C_{1}||f(H_{0})||_{B(W^{k,p_{W}k’.q_{)}}}.\leqq||f(H)P_{c}(H)||_{B(W^{k,p}.W^{k’,q})}$

$\leqq C_{2}||f(H_{0})||_{B(W^{k,p_{W}k^{r}.q_{)}}}.$ , (1.2)

where the constants are independent of $f$ . We shall apply (1.2) to obtain,
among others, the $L^{p}-L^{q}$ estimates for the propagators of the time dependent
Schr\"odinger equations $i\partial u/\partial t=Hu$ and of the wave or Klein-Gordon equations
with potentials $\partial^{2}u/\partial t^{2}+Hu+\mu^{2}u=0$ , and the “Fourier multiplier theorems” for
the generalized eigenfunction expansions associated with $H$.

We assume that $V(x)$ satisfies the following assumption, where 9 is the
Fourier transform, $\langle x\rangle=(1+|x|^{2})^{1/2},$ $l\geqq 0$ is a fixed integer, and $m_{*}=(m-1)$

$./(m-2)$ . For multi-indices $\alpha=(\alpha_{1}, \alpha_{m}),$ $D^{\alpha}=D_{1}^{\alpha_{1}}\cdots D_{m^{m}}^{\alpha}$ and $|\alpha|=\alpha_{1}+\cdots+\alpha_{m}$ .

ASSUMPTION 1.1. $V(x)$ is a real valued function on $R^{m},$ $m\geqq 3$ , such that for
any $|\alpha|\leqq l\mathscr{F}(\langle x\rangle^{\sigma}D^{\alpha}V)\in L^{m*}(R^{m})$ for some $\sigma>2/m_{*}$ and satisfies one of the
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