J. Math. Soc. Japan Vol. 47, No. 3, 1995

On the structure of the moduli space of harmonic eigenmaps

By Gabor TOTH

(Received Feb. 8, 1993) (Revised Nov. 1, 1993)

1. Introduction and preliminaries.

It is well-known that a map $F: M \to S^N$ of a Riemannian manifold M into the Euclidean N-sphere $S^N \subset \mathbb{R}^{N+1}$ is harmonic [3] iff the induced vector-valued function $F: M \to \mathbb{R}^{N+1}$ satisfies the equation

$$\Delta^{M}F = \mu F, \qquad (1)$$

where Δ^{M} is the Laplacian on M and the scalar μ is uniquely determined by F, in fact, μ is nothing but the energy density e(F)=trace $||F_*||^2$ of F. (We work in the C^{∞} -category, i.e., we assume that all manifolds, maps, bundles etc. are of class C^{∞} .)

Applying an $(n+1)\times(N+1)$ -matrix $A \in M(n+1, N+1)$ to both sides of (1) we infer that $f=A \cdot F$ defines a harmonic map of M into S^n of energy density $e(f)=\mu(=e(F))$ provided that A maps the image of F into S^n . In this case, we say that f is *derived* from F and write $f \leftarrow F$. Define a symmetric endomorphism $\langle f \rangle$ of \mathbb{R}^{N+1} by $\langle f \rangle = A^{\intercal}A - I_{N+1}$. The condition $|f|^2 = 1$ is equivalent to that $\langle f \rangle$ is perpendicular to proj [F(x)] for all $x \in M$ with respect to the usual inner product $\langle C, C' \rangle = \text{trace}(C'^{\intercal} \cdot C), C, C' \in S^2(\mathbb{R}^{N+1})$. Clearly $\langle f \rangle$ depends only on the equivalence class of f, where two maps $f', f'': M \rightarrow S^n$ (derived from F) are said to be *equivalent* if $f''=U \cdot f'$ for some $U \in O(n+1)$. Restricting ourselves from here on to full maps (i. e., assuming that the image always spans the range) we obtain that, given a full harmonic map $F: M \rightarrow S^N$, the equivalence classes of full harmonic maps $f: M \rightarrow S^n$ that are derived from F can be parametrized (via $f \rightarrow \langle f \rangle$) by the convex body

$$\mathcal{L}_F = \{ C \in \mathcal{E}_F | C + I_{N+1} \ge 0 \}$$
(2)

 $(\cong' \text{ stands for positive semidefinite}), where$

$$\mathcal{E}_F = (\operatorname{span} \{ \operatorname{proj} [F(x)] | x \in M \})^{\perp} \subset S^2(\mathbf{R}^{N+1}).$$
(3)