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1. Introduction and preliminaries.

It is well-known that a map $F:Marrow S^{N}$ of a Riemannian manifold $M$ into
the Euclidean $N$-sphere $S^{N}\subset R^{N+1}$ is harmonic [3] iff the induced vector-valued
function $F:Marrow R^{N+1}$ satisfies the equation

$\Delta^{M}F=\mu F$ , (1)

where $\Delta^{M}$ is the Laplacian on $M$ and the scalar $\mu$ is uniquely determined by
$F$, in fact, $\mu$ is nothing but the energy density $e(F)=trace||F_{*}||^{2}$ of F. (We

work in the $C^{\infty}$-category, $i$ . $e.$ , we assume that all manifolds, maps, bundles etc.
are of class $C^{\infty}.$ )

Applying an $(n+1)\cross(N+1)$-matrix $A\in M(n+1, N+1)$ to both sides of (1)

we infer that $f=A\cdot F$ defines a harmonic map of $M$ into $S^{n}$ of energy density
$e(f)=\mu(=e(F))$ provided that $A$ maps the image of $F$ into $S^{n}$ . In this case,
we say that $f$ is derived from $F$ and write $farrow F$. Define a symmetric endo-
morphism $\langle f\rangle$ of $R^{N+1}$ by $\langle f\rangle=A^{\rceil}A-I_{N+1}$ . The condition $|f|^{2}=1$ is equivalent
to that $\langle f\rangle$ is perpendicular to proi $[F(x)]$ for all $x\in M$ with respect to the
usual inner product $\langle C, C’\rangle=trace(C^{\prime T}\cdot C),$ $C,$ $C’\in S^{2}(R^{N+1})$ . Clearly $\langle f\rangle$ de-
pends only on the equivalence class of $f$ , where two maps $f’,$ $f’’$ : $Marrow S^{n}$

(derived from $F$ ) are said to be equivalent if $f’’=U\cdot f’$ for some $U\in O(n+1)$ .
Restricting ourselves from here on to full maps ( $i$ . $e.$ , assuming that the image
always spans the range) we obtain that, given a full harmonic map $F:Marrow S^{N}$ ,
the equivalence classes of full harmonic maps $f:Marrow S^{n}$ that are derived from
$F$ can be parametrized (via $farrow\langle f\rangle$ ) by the convex body

$x_{F}=\{C\in \mathcal{E}_{F}|C+I_{N+1}\geqq 0\}$ (2)

(‘ )‘ stands for positive semidefinite), where

$e_{F}=$ $($span {proj $[F(x)]|x\in M\})^{\perp}\subset S^{2}(R^{N+1})$ . (3)


