Hausdorff dimensions of self-similar sets and shortest path metrics

By Jun KIGAMI

(Received Feb. 3, 1993) (Revised Aug. 22, 1993)

Introduction.

Let (X, d) be a complete metric space and let f_1, f_2, \dots, f_N be contractions from X to itself, that is,

$$\sup_{x,y \in X} \frac{d(f_i(x), f_i(y))}{d(x, y)} < 1.$$

Then it follows that

THEOREM 1.1 (Hutchinson $[\mathbf{H}\mathbf{u}]$). There exists a unique non-empty compact set K such that

$$K = \bigcup_{i=1}^{N} f_i(K).$$

K is called a self-similar set with respect to $((X, d), \{f_i\}_{i=1}^N)$.

This paper contains two main subjects. First in § 2, we will study the Hausdorff dimension of a self-similar set. For the case that X is an Euclidian space \mathbb{R}^n and f_i 's are similarly space, there is a well-known result by Moran $[\mathbf{M}]$.

THEOREM 1.2. Let $X = \mathbb{R}^n$ and let f_i be an r_i -similitude of \mathbb{R}^n for $i=1, 2, \dots, N$; that is, for all $x, y \in \mathbb{R}^n$,

$$d(f_i(x), f_i(y)) = r_i d(x, y),$$

where d is the ordinary Euclidean distance on \mathbb{R}^n . If there exists an open set $O \subset \mathbb{R}^n$ such that

$$\bigcup_{i=1}^{N} f_i(O) \subset O \quad and \quad f_i(O) \cap f_j(O) = \emptyset \quad for \ i \neq j,$$

then the Hausdorff dimension of the self-similar set (K, d) with respect to $((\mathbf{R}^n, d), \{f_i\}_{i=1}^N)$ is the unique number α that satisfies

$$(1.1) \qquad \qquad \sum_{i=1}^{N} r_i{}^{\alpha} = 1.$$