Standard generalized vectors for algebras of unbounded operators

By Atsushi INOUE

(Received Apr. 22, 1993) (Revised Aug. 11, 1993)

§ 1. Introduction.

In [7, 8] we defined the notion of generalized vectors for O^* -algebras which is a generalization of cyclic vectors to study the structure of O^* -algebras. In particular, we defined and studied the notion of (full) standard generalized vectors which makes it possible to develop the Tomita-Takesaki theory in O*algebras. In this paper we shall continue such a study for O*-algebras (called generalized von Neumann algebra) which are an unbounded generalization of von Neumann algebras. Let λ be a standard generalized vector for a generalized von Neumann algebra \mathcal{M} on \mathcal{D} . Then it has been shown in [7] that a oneparameter group $\{\sigma_t^{\lambda}\}_{t\in\mathbb{R}}$ of *-automorphisms of \mathcal{M} is defined and λ satisfies the KMS-condition with respect to $\{\sigma_t^{\lambda}\}$. We shall show a Radon-Nikodym type property which establishes a link between the modular automorphism groups $\{\sigma_t^{\lambda}\}$ and $\{\sigma_t^{\mu}\}$ of \mathcal{M} for two full standard generalized vectors λ and μ : There uniquely exists a strongly continuous map $t \in \mathbb{R} \to U_t \in \mathcal{M}_u \equiv \{U \in \mathcal{M}; \overline{U} \text{ is unitary}\}$ such that $U_{t+s}=U_t\sigma_s^{\lambda}(U_s)$ and $\sigma_t^{\mu}(X)=U_t\sigma_t^{\lambda}(X)U_t^*$ for all $s, t\in \mathbb{R}$ and $X\in \mathcal{M}$. The map $t \in \mathbb{R} \to U_t \in \mathcal{M}$ is called the cocycle associated with μ with respect to λ and denoted by $[D\mu:D\lambda]$. Further, we shall show that $\{[D\mu:D\lambda]_t\}_{t\in\mathbb{R}}$ is a oneparameter group if and only if the domain $D(\mu)$ of μ is $\{\sigma_t^{\lambda}\}$ -invariant and $\|\mu(\sigma_t^{\lambda}(X))\| = \|\mu(X)\|$ for all $X \in D(\mu)$ and $t \in \mathbb{R}$ if and only if $\{[D\mu : D\lambda]_t\} \subset \mathcal{M}_b^{\sigma\lambda}$ $\equiv \{A \in \mathcal{M}; \overline{A} \text{ is bounded and } \sigma_t^2(A) = A \text{ for all } t \in \mathbb{R}\}.$ Then, we say that μ commutes with λ . These results are generalization of the Connes cocycle theorem [1, 17] for von Neumann algebras. We shall extend the Pedersen-Takesaki Radon-Nikodym theorem [12, 17] for von Neumann algebras to generalized von Neumann algebras. Let λ be a full standard generalized vector for $\mathcal M$ and $\mathcal{M}_n^{\sigma^{\lambda}}$ the set of all non-singular positive self-adjoint operators A in \mathcal{H} satisfying $\{E_A(t); -\infty < t < \infty\}$ " $\cap \mathcal{D} \subset \mathcal{M}_b^{\sigma^{\lambda}}$, where $\{E_A(t)\}$ is the spectral resolutions of A. For every $A \in \mathcal{M}_{\eta}^{\sigma^{\lambda}}$ we can define a standard generalized vector λ_{A} for \mathcal{M} satisfying $\sigma_t^{\lambda_A}(X) = A^{2it}\sigma_t^{\lambda}(X)A^{-2it}$ and $[D(\lambda_A)_{\sigma}: D\lambda]_t = A^{2it} \Gamma \mathcal{D}$ for all $X \in \mathcal{M}$ and $t \in \mathbb{R}$, and so $(\lambda_A)_{\sigma}$ commutes with λ , where $(\lambda_A)_{\sigma}$ is the full extension of λ_A . Con-