Posinormal operators

By H. Crawford RHALY, Jr.

(Received April 27, 1992) (Revised April 12, 1993)

0. Introduction.

In this paper we study the properties of a large subclass of $\mathcal{B}(\mathcal{H})$, the set of all bounded linear operators $T: \mathcal{H} \to \mathcal{H}$ on a Hilbert space \mathcal{H} . As is customary, we refer to $T^*T - TT^*$ as the self-commutator of T, denoted $[T^*, T]$. A self-adjoint operator P is positive if $\langle Pf, f \rangle \geq 0$ for all $f \in \mathcal{H}$; the operator Tis normal if $[T^*, T]=0$ and T is hyponormal if $[T^*, T]$ is positive. When T^* is hyponormal, we say T is cohyponormal; T is seminormal if T is hyponormal or cohyponormal. If T is the restriction of a normal operator to an invariant subspace, then T is subnormal.

If $A \in \mathcal{B}(\mathcal{H})$ is to belong to our subclass, then A must not be "too far" from normal; more precisely, there must exist an *interrupter* $S \in \mathcal{B}(\mathcal{H})$ such that $AA^* = A^*SA$, or equivalently, $[A^*, A] = A^*(I-S)A$. Two observations suggest the additional requirement that S be self-adjoint, even positive: (1) since AA^* is self-adjoint, each operator A in our subclass must satisfy A^*S^*A $= A^*SA$; (2) since $\langle SAf, Af \rangle = \langle A^*SAf, f \rangle = ||A^*f||^2$ for all f, the interrupter S must be positive on Ran A (the range of A).

DEFINITION. If $A \in \mathcal{B}(\mathcal{H})$, then A is *posinormal* if there exists a positive operator $P \in \mathcal{B}(\mathcal{H})$ such that $AA^* = A^*PA$. $\mathcal{P}(\mathcal{H})$ will denote the set of all posinormal operators on \mathcal{H} . A is *coposinormal* if A^* is posinormal.

We note that if A is posinormal with interrupter P and V is an isometry (that is, V*V=I), then, as one can easily check, VAV* is posinormal with interrupter VPV*. Consequently, posinormality is a unitary invariant (that is, if A is posinormal and T is unitarily equivalent to A, then T is also posinormal).

If the posinormal operator A is nonzero, the associated interrupter P must satisfy the condition $||P|| \ge 1$ since $||A||^2 = ||AA^*|| = ||A^*PA|| \le ||A^*|| ||P|| ||A|| =$ $||P|| ||A||^2$. We will make repeated use \sqrt{P} , whose existence is guaranteed by the functional calculus for (positive) self-adjoint operators. P need not be unique, as we will soon see; the following result gives a sufficient condition for the uniqueness of P.