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1. Introduction.

In a recent paper [P], the second named author showed that an estimate
of the form

$J_{1}(N, H)=o(NH^{2})$ for $H\geqq N^{\theta}$ , (1)

where $0<\theta<1$ and

$J_{1}(N, H)= \int_{N}^{aN}|\phi(x+H)-\phi(x)-H|^{2}dx$ ,

follows from an estimate of the form

$\int_{N}^{2N}|E(x, T)|^{2}dx=o(\frac{N}{T^{2}L}$) for $T\leqq N^{1-\theta}$ L. (2)

Here $L=\log N$ and $E(x, T)$ denotes the remainder term in the classical explicit
formula

$\phi(x)=x-\sum_{|\gamma|}\frac{x^{\rho}}{\rho}+E(xrT)$

where $\rho=\beta+i\gamma$ runs over the non-trivial zeros of the Riemann zeta function.
It is well known, see e.g. ch. 17 of Davenport [D], that

$E(x, T) \ll\frac{x\log^{f}x}{T}$ . (3)

Since (2) is only a power of $L$ stronger than the estimate which follows from
(3), it may appear somewhat surprising that a Mund of the form (2) implies a
bound of the form (1), for every $0<\theta<1$ .

In this paper we give a partial explanation of the above implication. Indeed,
in [K-P] we obtain the following new form of the explicit formula. Let $0<$

$\epsilon<1/4$ ,

$w(u)=\{$

1 $0 \leqq u\leqq\frac{1}{2}$

$2(1-u)$ $\frac{1}{2}\leqq u\leqq 1$ ,
$sgn(u)=\{$

1 $u>0$

$0$ $u=0$

$-1$ $u<0$


