Application of the theory of KM₂O-Langevin equations to the linear prediction problem for the multi-dimensional weakly stationary time series

Dedicated to Professor Hiroshi Tanaka on his sixtieth birthday

By Yasunori OKABE

(Received Feb. 7, 1992)

§1. Introduction.

Let $X = (X(n); n \in \mathbb{Z})$ be a *d*-dimensional weakly stationary time series on a probability space (Ω, \mathcal{B}, P) with expectation vector 0 and covariance matrix function *R*. Wiener and Masani ([16], [17], [3]) have developed a theory of the linear prediction problem for the time series *X*. By the innovation method, they have introduced an innovation process $\varepsilon_+ = (\varepsilon_+(n); n \in \mathbb{Z})$ by

(1.1)
$$\varepsilon_+(n) = X(n) - P_{M_{-\infty}^{n-1}(X)} X(n),$$

where $P_{M^{n-1}_{-\infty}(X)}$ stands for the projection operator on the past subspace $M^{n-1}_{-\infty}(X)$ of $L^2(\mathcal{Q}, \mathcal{B}, P)$ defined by

(1.2) $M_{-\infty}^{n-1}(X) = \text{the closed subspace generated by } \{X_j(l); l \leq n-1, 1 \leq j \leq d\}.$

We denote by $V_+ \in M(d; \mathbb{R})$ the prediction error matrix:

(1.3)
$$V_{+} = E(\varepsilon_{+}(0)^{t}\varepsilon_{+}(0)).$$

The process X is said to be purely nondeterministic if and only if $\bigcap_{n\in\mathbb{Z}}M^n_{-\infty}(X)=0$ and to be of full rank if and only if the rank of the matrix V_+ is d. It has been in [16] characterized that X is purely nondeterministic and of full rank if and only if it has a spectral density matrix function Δ such that

(1.4)
$$\log (\det(\varDelta)) \in L^1(-\pi, \pi)$$

and then proved that

(1.5)
$$\det V_{+} = \exp\left[\frac{1}{2\pi}\int_{-\pi}^{\pi}\log\left(\det\left(\mathcal{\Delta}(\theta)\right)\right)d\theta\right].$$

This research was partially supported by Grant-in-Aid for Science Research No. 03452011, the Ministry of Education, Science and Culture, Japan.