The Neumann and Dirichlet problems for elliptic operators

By Hisako WATANABE

(Received July 23, 1991)

1. Introduction.

Let D be a bounded C^1 -domain in \mathbb{R}^d . In [3] E.B. Fabes, M. Jodeit JR. and N.M. Rivière proved that, for every $f \in L^p(\partial D)$ satisfying $\int f d\sigma = 0$, there exists a function u which is harmonic in D, and $\langle \nabla u(X), N_P \rangle$ converges to f(P) with an exception of a set of surface measure zero as X tends to P nontangentially. The corresponding results have been obtained even for a Lipschitz domain D in the case 1 (cf. [4], [2]).

On the other hand it is well-known that in \mathbf{R}^{d+1}_+ the Poisson integral of the Bessel potential $G_{\alpha}*f$ of each $f \in L^p(\mathbf{R}^d)$ converges not only nontangentially but also tangentially except for a set of an appropriately dimensional Hausdorff measure zero (cf. [1]).

In [7], for a bounded $C^{1,\alpha}$ -domain D, we have studied the boundary behavior of the derivatives of solutions for the above Neumann problem, not up to an exception with a set of surface measure zero, but up to an exception with a set of β -dimensional Hausdorff measure zero for β satisfying $0 < \beta < d-1$.

In this paper we will consider the corresponding boundary behaviors of solutions of the Dirichlet and Neumann problems for uniformly elliptic differential operators.

Let L be a differential operator on \mathbf{R}^d $(d \ge 3)$ defined by

(1.1)
$$L = \sum_{j, k=1}^{d} D_{j}(a_{jk}D_{k}),$$

where $D_j = \partial/\partial x_j$ and a_{jk} are of class $C^{1,\alpha}$ with $a_{jk} = a_{kj}$. Moreover L is assumed to be uniformly elliptic. This means that there exists a positive real number $\lambda > 1$ such that

$$\lambda^{-1} |\boldsymbol{\xi}|^2 \leq \sum_{j, k=1}^d a_{jk}(X) \boldsymbol{\xi}_j \boldsymbol{\xi}_k \leq \lambda |\boldsymbol{\xi}|^2$$

for all $X, \xi = (\xi_1, \dots, \xi_d) \in \mathbb{R}^d$.

Let D be a bounded $C^{1,\alpha}$ -domain in \mathbb{R}^d and $0 < \beta < d-1$. To classify functions defined on ∂D , we use, as in [7], a countably sublinear functional γ_β and