On the Gauss curvature of minimal surfaces

By Hirotaka Fujimoto

(Received July 19, 1991)

§ 1. Introduction.

In 1952, E. Heinz showed that, for a minimal surface M in \boldsymbol{R}^{3} which is the graph of a function $z=z(x, y)$ of class C^{2} defined on a disk $\Delta_{R}:=\left\{(x, y) ; x^{2}+\right.$ $\left.y^{2}<R^{2}\right\}$, there is a positive constant C not depending on each surface M such that $|K| \leqq C / R^{2}$ holds for the curvature K of M at the origin ([8]). This is an improvement of the classical Bernstein's theorem that a minimal surface in \boldsymbol{R}^{3} which is the graph of a function of class C^{2} defined on the total plane is necessarily a plane. Later, R. Osserman gave some generalizations of these results to surfaces which need not be of the form $z=z(x, y)$ ([10], [11]). To state one of his results, we consider a connected, oriented minimal surface M immersed in \boldsymbol{R}^{3} and, for a point $p \in M$, we denote by $K(p)$ and $d(p)$ the Gauss curvature of M at p and the distance from p to the boundary of M respectively. He gave the following estimate of the Gauss curvature of M.

Theorem A. Let M be a simply-connected minimal surface immersed in \boldsymbol{R}^{3} and assume that there is some fixed nonzero vector n_{0} and a number $\theta_{0}>0$ such that all normals to M make angles of at least θ_{0} with n_{0}. Then,

$$
|K(p)|^{1 / 2} \leqq \frac{1}{d(p)} \frac{2 \cos \left(\theta_{0} / 2\right)}{\sin ^{3}\left(\theta_{0} / 2\right)} \quad(p \in M)
$$

He obtained also some generalization of Theorem A to minimal surfaces immersed in $\boldsymbol{R}^{m}(m \geqq 3)$ ($[\mathbf{1 2]}$).

Relating to these results, the author proved the following theorem in his paper [4].

Theorem B. Let M be a minimal surface immersed in \boldsymbol{R}^{3} and let $G: M \rightarrow S^{2}$ be the Gauss map of M. If G omits mutually distinct five points n_{1}, \cdots, n_{5} in S^{2}, then it holds that

$$
\begin{equation*}
|K(p)|^{1 / 2} \leqq \frac{C}{d(p)} \quad(p \in M) \tag{1}
\end{equation*}
$$

for some positive constant C depending only on n_{j} 's.

