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\S 0. Introduction.

In this paper we give a correction and a proof of the result announced in
[2]. Let $X$ be an algebraic K3 surface defined over $C$ . The second cohomo-
logy group $H^{2}(X, Z)$ has a canonical structure of a lattice of rank 22 induced
from the cup product. Let $S_{X}$ be the Picard group of $X$. Then $S_{X}$ admits a
structure of sublattice of $H^{2}(X, Z)$ . Let $T_{X}$ be the orthogonal complement of
$S_{X}$ in $H^{2}(X, Z)$ which is called a transcendental lattice of $X$. Put $H_{X}=$

$Ker$ {Aut $(X)arrow 0(S_{X})$ }, where $O(S_{X})$ is the group of isometries of the lattice $S_{X}$ .
Nikulin [3] proved that $H_{X}$ is a finite cyclic group of order $m$ and $\varphi(m)$ is a
divisor of the rank of $T_{X}$ , where $\varphi$ is the Euler function. We now give a
correction of the result in [2] as follows:

THEOREM. Let $X$ be an algebraic $K3$ surface and $m_{X}$ the order of $H_{X}$ .
Assume that the lattice $T_{X}$ is unimodular $(i. e. det(T_{X})=\pm 1)$ . Then

(i) $m_{X}$ is a divisor of 66, 44, 42, 36, 28 or 12.
(ii) Suppose that $\varphi(m_{X})=rank(T_{X})$ . Then $m_{X}$ is equal to either 66, 44, 42,

36, 28 or 12. Mcreover for $m=66,44,42,36,28$ or 12, there exists a unique
(up to isomorphisms) $K3$ surface with $m_{X}=m$ .

In [2], on page 358, line 9, the statement “the order of the restriction $\ldots$

is false, and the Vorontsov’s result [12] is correct. In [12], Vorontsov proved
the result (i) of the above Theorem. In case $T_{X}$ is non unimodular, he also
proved a similar result as the above theorem (see Corollary 6.2). His method
is based on the theory of a cyclotomic field $Q(m)$ . Here we use mainly the
theory of elliptic surfaces due to Kodaira [1] and Nikulin’s results on finite
automorphisms of K3 surfaces [3], [4]. Also we give examples of such K3
surfaces. Some of them are independently constructed by I. Dolgachev, K.
Saito [6], T. Shioda, and the author.

In Section 1, we recall the result of Nikulin [3] on automorphisms of K3
surfaces. Section 2 is devoted to some remarks on elliptic pencils on K3 sur-


