Interpolating sequences in the maximal ideal space of H°

By Keiji Izuchi

(Received Oct. 1, 1990)

1. Introduction.

Let H^{∞} be the space of bounded analytic functions on the open unit disc D. H^{∞} becomes a Banach algebra with the supremum norm. We denote by $M\left(H^{\infty}\right)$ the maximal ideal space of H^{∞} with the weak*-topology. We identify a function in H^{∞} with its Gelfand transform. For points x and y in $M\left(H^{\infty}\right)$, the pseudo-hyperbolic distance is defined by

$$
\rho(x, y)=\sup \left\{|h(x)| ; h \in \operatorname{ball}\left(H^{\infty}\right), h(y)=0\right\},
$$

where ball $\left(H^{\infty}\right)$ stands for the unit closed ball of H^{∞}. For z and w in D, we have $\rho(z, w)=|z-w| /|1-\bar{z} w|$. A sequence $\left\{x_{j}\right\}_{j}$ in $M\left(H^{\infty}\right)$ is called interpolating if for every bounded sequence $\left\{a_{j}\right\}_{j}$ there is a function f in H^{∞} such that $f\left(x_{j}\right)=a_{j}$ for every j. It is well known (see [2, p. 283]) that for a sequence $\left\{z_{j}\right\}_{j}$ in $D,\left\{z_{j}\right\}_{j}$ is interpolating if and only if

$$
\inf _{k} \prod_{j \neq k} \rho\left(z_{j}, z_{k}\right)>0 .
$$

For a sequence $\left\{z_{j}\right\}_{j}$ in D with $\sum_{j=1}^{\infty} 1-\left|z_{j}\right|<\infty$, a function

$$
b(z)=\prod_{j=1}^{\infty} \frac{\bar{z}_{j}}{\left|z_{j}\right|} \frac{z_{j}-z}{1-\bar{z}_{j} z} \quad(z \in D)
$$

is called a Blaschke product with zeros $\left\{z_{j}\right\}_{j}$, and $\left\{z_{j}\right\}_{j}$ is called the zero sequence of b. If $\left\{z_{j}\right\}_{j}$ is interpolating, we call b interpolating. For a function f in H^{∞}, put $Z(f)=\left\{x \in M\left(H^{\infty}\right) ; f(x)=0\right\}$. For a subset E of $M\left(H^{\infty}\right)$, we denote by $\mathrm{cl} E$ the weak*-closure of E in $M\left(H^{\infty}\right)$.

For a point x in $M\left(H^{\infty}\right)$, the set $P(x)=\left\{y \in M\left(H^{\infty}\right) ; \rho(y, x)<1\right\}$ is called a Gleason part of x. If $P(x) \neq\{x\}, P(x)$ is called nontrivial. D is a typical nontrivial part. We set

$$
G=\left\{x \in M\left(H^{\infty}\right) ; x \text { is nontrivial }\right\} .
$$

Hoffman [5] proved that for a point x in G, there is an interpolating sequence $\left\{z_{j}\right\}_{j}$ such that x is contained in $\mathrm{cl}\left\{z_{j}\right\}_{j}$, and there is a continuous map L_{x} from D onto $P(x)$ such that $f \circ L_{x} \in H^{\infty}$ for every $f \in H^{\infty}$, where L_{x} is given

