J. Math. Soc. Japan Vol. 43, No. 4, 1991

Interpolating sequences in the maximal ideal space of H^{∞}

By Keiji IZUCHI

(Received Oct. 1, 1990)

1. Introduction.

Let H^{∞} be the space of bounded analytic functions on the open unit disc *D*. H^{∞} becomes a Banach algebra with the supremum norm. We denote by $M(H^{\infty})$ the maximal ideal space of H^{∞} with the weak*-topology. We identify a function in H^{∞} with its Gelfand transform. For points x and y in $M(H^{\infty})$, the pseudo-hyperbolic distance is defined by

$$\rho(x, y) = \sup\{|h(x)|; h \in \text{ball } (H^{\infty}), h(y) = 0\},\$$

where ball (H^{∞}) stands for the unit closed ball of H^{∞} . For z and w in D, we have $\rho(z, w) = |z - w| / |1 - \overline{z}w|$. A sequence $\{x_j\}_j$ in $M(H^{\infty})$ is called interpolating if for every bounded sequence $\{a_j\}_j$ there is a function f in H^{∞} such that $f(x_j) = a_j$ for every j. It is well known (see [2, p. 283]) that for a sequence $\{z_j\}_j$ in D, $\{z_j\}_j$ is interpolating if and only if

$$\inf_k \prod_{j\neq k} \rho(z_j, z_k) > 0.$$

For a sequence $\{z_j\}_j$ in D with $\sum_{j=1}^{\infty} 1 - |z_j| < \infty$, a function

$$b(z) = \prod_{j=1}^{\infty} \frac{\bar{z}_j}{|z_j|} \frac{z_j - z}{1 - \bar{z}_j z} \quad (z \in D)$$

is called a Blaschke product with zeros $\{z_j\}_j$, and $\{z_j\}_j$ is called the zero sequence of b. If $\{z_j\}_j$ is interpolating, we call b interpolating. For a function f in H^{∞} , put $Z(f) = \{x \in M(H^{\infty}); f(x) = 0\}$. For a subset E of $M(H^{\infty})$, we denote by cl E the weak*-closure of E in $M(H^{\infty})$.

For a point x in $M(H^{\infty})$, the set $P(x) = \{y \in M(H^{\infty}); \rho(y, x) < 1\}$ is called a Gleason part of x. If $P(x) \neq \{x\}$, P(x) is called nontrivial. D is a typical nontrivial part. We set

$$G = \{x \in M(H^{\infty}); x \text{ is nontrivial}\}.$$

Hoffman [5] proved that for a point x in G, there is an interpolating sequence $\{z_j\}_j$ such that x is contained in cl $\{z_j\}_j$, and there is a continuous map L_x from D onto P(x) such that $f \circ L_x \in H^\infty$ for every $f \in H^\infty$, where L_x is given