A decomposition theorem in a Banach *-algebra related to completely bounded maps on C^{*}-algebras

By Takashi ITOH

(Received Feb. 23, 1990)
(Revised Oct. 5, 1990)

1. Introduction.

As one of the fundamental theorems in C^{*}-algebras, it is well known that a self-adjoint element has the Jordan decomposition and a self-adjoint bounded linear functional has the Hahn decomposition: i.e. if x is a self-adjoint element in a C^{*}-algebra A, then there exist two positive elements $x_{1}, x_{2} \in A$ such that $x=x_{1}-x_{2}, x_{1} x_{2}=0$ and $\|x\|=\left\|x_{1}+x_{2}\right\|$. If f is a self-adjoint bounded linear functional on A, then there exist two positive linear functionals $f_{1}, f_{2} \in A^{*}$ such that $f=f_{1}-f_{2}$ and $\|f\|=\left\|f_{1}+f_{2}\right\|$.

As a generalized version of the Hahn decomposition, Loebl and Tsui considered independently whether the bounded self-adjoint map has the positive decomposition [10], [16]. The answer was negative except a few cases. Furthermore Huruya and Tomiyama obtained a non-existence theorem of the Hahn decomposition of bounded maps in the general situation [8]. However, it was Wittstock who showed the self-adjoint completely bounded map of a C^{*}-algebra to an injective C^{*}-algebra can be written as a difference of two completely positive maps with the norm condition [17]. This can be seen as a generalized Hahn decomposition, since the complete boundedness coincides with the boundedness and the complete positivity coincides with the positivity if the range algebra is commutative.

On the other hand, a completely bounded map can be regarded as an element in the dual space of a certain Banach space [6], [9], [5]. In this paper, especially motivated by the isomorphism which is obtained by Effros and Exel [5], we intend to get the Jordan decomposition and the Hahn decomposition in an advanced form. The main theorem is the following.

Theorem B. Let A be a C^{*}-algebra and $B(H)$ be all bounded operators on a Hilbert space H. Suppose that p is a finite dimensional projection.
(1) If V is a self-adjoint element in $p B(H) \otimes_{n} A \otimes_{n} B(H) p$ with the Haagerup norm $\left\|\|_{n}\right.$, then

