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\S 0. Introduction.

An important problem in differential geometry is to characterize the global
behaviour of a manifold in terms of local invariants. A result in this direction
is given by the following theorem: If $M$ is a complete, simply connected rie-
mannian manifold whose curvature tensor is close to the curvature tensor of
the standard sphere $S$ , then $M$ is diffeomorphic to $S$ . This is called the differ-
entiable sphere theorem. In this paper, we prove that 0.681-pinched riemannian
manifold is diffeomorphic to the standard sphere.

The proximity of curvature tensors $R$ and $\overline{R}$ of the manifold $M$ and the
standard sphere $S$ respectively is measured in terms of sectional curvature: A
riemannian manifold whose sectional curvature $K$ satisfies the condition $\delta\leqq K<1$

is called $\delta$-pinched. For the first time, Gromoll [2], Calabi, and Shikata [11]
gave some results on the differentiable sphere theorem. Later on, these results
were improved: Sugimoto and Shiohama [12] found a pinching number $\delta(=0.87)$

independent of the dimension of $M$ such that a complete, simply connected and
$\delta$-pinched riemannian manifold $M$ is diffeomorphic to the standard sphere. ${\rm Im}$

Hof and Ruh [5] gave a sequence $\delta_{n}$ of pinching numbers dependent on $n$ of
dimension of $M$ : A $\delta_{n}$ -pinched manifold $M$ is not only diffeomorphic to the
standard sphere, but the action of the isometry group of $M$ is also equivalent
to the standard linear action of a subgroup of $O(n+1, R)$ on the sphere. The
number $\delta_{n}$ is decreasing on $n$ and $\lim\delta_{n}=0.68$ as $n$ tends to infinity. But, if
we take the number $\delta$ independent of dimension of $M$ on ${\rm Im}$ Hof and Ruh’s
result, $\delta$ becomes considerably large, $i.e.,$ $\delta=0.98$ for $n>5$ . It is unknown
what number is the infimum of $\delta$ in order that a complete, simply connected
and $\delta$-pinched riemannian manifold is diffeomorphic to the standard sphere.

Sugimoto and Shiohama’s beginning idea was due to Omori [7], from which
they derived that a complete, simply connected and $\delta$-pinched riemannian mani-
fold $1t/I^{n}$ is diffeomorphic to the standard sphere $S^{n}$ if a diffeomorphism $f$ of
$S^{n-1}$ , which is naturally defined for $\delta$-pinched manifold $M$, is diffeotopic to the


