Differentiable sphere theorem by curvature pinching

Dedicated to Professor Nobuyuki Ikeda on his 60th birthday

By Yoshihiko SUYAMA

(Received July 24, 1989) (Revised Sept. 11, 1990)

§0. Introduction.

An important problem in differential geometry is to characterize the global behaviour of a manifold in terms of local invariants. A result in this direction is given by the following theorem: If M is a complete, simply connected riemannian manifold whose curvature tensor is close to the curvature tensor of the standard sphere S, then M is diffeomorphic to S. This is called the differentiable sphere theorem. In this paper, we prove that 0.681-pinched riemannian manifold is diffeomorphic to the standard sphere.

The proximity of curvature tensors R and \overline{R} of the manifold M and the standard sphere S respectively is measured in terms of sectional curvature: A riemannian manifold whose sectional curvature K satisfies the condition $\delta \leq K \leq 1$ is called δ -pinched. For the first time, Gromoll [2], Calabi, and Shikata [11] gave some results on the differentiable sphere theorem. Later on, these results were improved: Sugimoto and Shiohama [12] found a pinching number $\delta(=0.87)$ independent of the dimension of M such that a complete, simply connected and δ -pinched riemannian manifold M is diffeomorphic to the standard sphere. Im Hof and Ruh [5] gave a sequence δ_n of pinching numbers dependent on n of dimension of M: A δ_n -pinched manifold M is not only diffeomorphic to the standard sphere, but the action of the isometry group of M is also equivalent to the standard linear action of a subgroup of O(n+1, R) on the sphere. The number δ_n is decreasing on n and $\lim \delta_n = 0.68$ as n tends to infinity. But, if we take the number δ independent of dimension of M on Im Hof and Ruh's result, δ becomes considerably large, i.e., $\delta = 0.98$ for n > 5. It is unknown what number is the infimum of δ in order that a complete, simply connected and δ -pinched riemannian manifold is diffeomorphic to the standard sphere.

Sugimoto and Shiohama's beginning idea was due to Omori [7], from which they derived that a complete, simply connected and δ -pinched riemannian manifold M^n is diffeomorphic to the standard sphere S^n if a diffeomorphism f of S^{n-1} , which is naturally defined for δ -pinched manifold M, is diffeotopic to the