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Introduction.

Let $X^{\wedge}$ be a connected projective submanifold of $P_{C}$ and let $L^{\wedge}=O_{P_{C}}(1)_{x^{\wedge}}$ .
Studying the pair $(X^{\wedge}, L^{\wedge})$ adjunction theoretically leads to various classes of
varieties with special fibre structures, $e.g$ . scrolls and quadric fibrations. In
this article we study these special fibre structures and show that they are in
many cases even better behaved that might be expected. It is a blanket assump-
tionlin this paper that $\dim X^{\wedge}\geqq 3$ .

The adjoint bundle, $K_{X}\wedge+(n-1)L^{\wedge}$ , is nef and big except for the following
very special pairs (see [S2], [S7], [SV]):

a) $(X^{\wedge}, L^{\wedge})$ is either $(P^{n}, O_{pn}(1))$, a scroll over a curve, or a quadric $Q$ in
$P^{n+1}$ with $L_{Q}^{\wedge}=O_{P}n+1(1)_{Q}$ ,

b) $(X^{\wedge}, L^{\wedge})$ is a Del Pezzo variety, i.e. $K_{x^{\wedge}}\approx L^{\wedge}-(n-1)$

c) $(X^{\wedge}, L^{\wedge})$ is a quadric bundle over a smooth curve,
d) $(X^{\wedge}, L^{\wedge})$ is a scroll over a surface.

The definitions of scrolls and quadric bundles are given in (0.6).

Given such a pair with $K_{X}\wedge+(n-1)L^{\wedge}$ nef and big, there exists a new pair
(X, $L$ ), the reduction of $(X^{\wedge}, L^{\wedge})$ , where $X$ is smooth and $L$ is ample, and

2 there exists a morphism $\pi:X^{\wedge}arrow X$ expressing $X^{\wedge}$ as $X$ with a finite
set $B$ blown up, $L=(\pi_{*}L^{\wedge})^{**}$ ,

2 $L^{\wedge}\approx\pi^{*}L-[\pi^{-1}(B)]$ (equivalently $K_{X^{\wedge}}+(n-1)L^{\wedge}=\pi^{*}(K_{X}+(n-1)L)$),

2 $K_{X}+(n-1)L$ is ample (and in fact very ample by the main result of
[SV] $)$ .

Throughout this introduction $(X^{\wedge}, L^{\wedge})$ will always be a pair as above with
$a:reduction(X, L)$ . It further follows that $K_{X}+(n-2)L$ is nef and big except
for a small list of exceptional pairs (see [S7], [Fj]):

a) (X, $L$ ) $=(P^{4}, O_{p4}(2))$ or $(P^{3}, O_{p3}(3))$,
b) (X, $L$ ) $=(Q, O_{Q}(2))$ where $(Q, O_{Q}(1))$ is a quadric in $P^{4}$ ,
c) there is a holomorphic surjection $\phi:Xarrow C$ onto a smooth curve, $C$ ,

where $K_{X}^{2}\otimes L^{3}\approx\phi^{*}H$ for an ample line bundle $H$ on $C$ ; in particular the
general fibre of $\phi$ is $(P^{2}, O_{P2}(2))$ ,


