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1. Introduction.

Let I" be a countable discrete subgroup of the group T'={zeC||z|=1}.
The character group I'" of I’ is a compact metric abelian group. Let X, be an
element of "~ determined by <z, X;>=z for zI', and R(I") a homeomorphism
of I'* defined by R(I"X=XXr for XeI'*. R({I") is called the translation of I'".
The notion of flow equivalence of homeomorphisms was introduced by W. Parry
and D. Sullivan [2]. In this article we are concerned with flow equivalence of
translations R(I"). This is closely related with stable isomorphism of irrational
rotation C*-algebras (N. Riedel [3], M. Rieffel [4], S. Kawamura and H. Take-
moto [1]). We prove the following

THEOREM. For countable subgroups I'y and I'y of T*, translations R(I",) and
R(I';) are mutually flow equivalent if and only if there exists a positive constant
¢ such that K,=cK,, where K; are subgroups of R defined by K;={xER|
exp@mix)el’;}, j=1, 2.

As an application we shall give necessary and sufficient conditions for flow
equivalence of n-dimensional irrational rotations, adding machine transformations
and solenoidal transformations respectively in the following examples.

ExaMpPLE 1. Let A1), A(2), ---, A(n) be rationally independent irrational num-
pers and I'={exp@zi Xk, m(NA)|m()eZ, j=1,2, -, n}. The translation
R(I') is topologically conjugate with an n-dimensional irrational rotation T =
T(AQ1), A2), -, A(n))defined by T'(x,, x2, ==+, X2)=(x,+A(L), X:+A2), -+, x,+4(n))
for (x,, %2, -, xo,)ER"/Z". Our theorem implies that irrational rotations
T(AL), A(2), -+, A(n)) and T(u(l), p(2), -+, p(n)) are mutually flow equivalent if
and only if there exist a positive constant ¢ and a matrix A=SL(n+1, Z) such
that

(1, AL, 4@2), -, An)) = (1, (1), p(2), -+, p(n)A.

EXAMPLE 2. Let »=(r,).:: be a sequence of integers=2, and ['={exp(2zik/



