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Heegner points and the modular curve of prime level
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The purpose of this note is to show how Heegner points can be used to
study the geometry of the modular curve $X=X_{0}(N)$ when $N$ is prime. For
example, we will show that the classical model for $X$ in $P^{1}\cross P^{1}$ given by the
zeroes of the $N^{th}$ modular polynomial has only ordinary double points as
singularities. We will also consider a specific fibre system of elliptic curve
over $X$ when $N\equiv 3(mod 4)$ and relate the fibres over certain Heegner points to
Q-curves.

I wish to thank R. Rumely, J. Tate, and D. Zagier for suggesting some of
the problems considered in this paper.

\S 1. Function theory.

Let $N$ be a prime. The curve $Y=Y_{0}(N)$ is defined over $Q$ and classifies
elliptic curves with an N-isogeny. If $F$ is any field of characteristic zero the
points of $Y$ rational over $F$ correspond to diagrams

$x=(\phi:Earrow E’)$ ,

where $E$ and $E’$ are elliptic curves over $F$ and $\phi$ is an F-rational (cyclic)

isogeny of degree $N$. The complex points of $Y$ may be identified with the
Riemann surface $\mathfrak{H}/\Gamma_{0}(N)[5$ , \S 1 $]$ .

The curve $Y$ is non-singular, but is not complete. We denote its compactifi-
cation $X=X_{0}(N)$ ; this is obtained by adjoining the two cusps $\infty$ and $0$ which
correspond to diagrams $(\phi : Earrow E’)$ of degenerate elliptic curves where the kernel
of $\phi$ meets each geometric component of $E$ [ $1$ , pp. 150-151]. We will call the
points $x$ of $Y$ affine points of $X$ ; if $x$ is a complex affine point we let $\tau$ be a
pre-image of $x$ in $\mathfrak{H}$ and $q=e^{2\pi i\tau}$ .

The complex function field of $X$ consists of the modular functions $f(\tau)$ for
$\Gamma_{0}(N)$ which are meromorphic on the extended upper half-plane. A function $f$

lies in the rational function field $Q(X)$ if and only if the Fourier coefficients in
its expansion at $\infty:f(\tau)=\sum a_{n}q^{n}$ are all rational numbers [1, p. 306]. The
field $Q(X)$ is known to be generated over $Q$ by the functions


