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\S 1. Introduction.

Let $S^{n}$ be a unit n-sphere in $R^{n+1}$ . Let $M^{p}$ be a compact orientable
p-dimensional Riemannian manifold which is imbedded in $S^{n}$ . Let $\chi(M^{p})$ be the
Euler characteristics of $M^{p}$ and $\tau(M^{p})$ be the total curvature of. $M^{p}$ . One of
Teufel’s main results in [8] can be stated $\cdot$ as follows.

(1.1) $\chi(M^{p})=\tau(M^{p})+\frac{1}{C_{n-1.n+1}}\int_{G_{n-1.n+1}}\chi(M^{p}\cap R^{n-1})\Omega_{n-1.n+1}$ for $3\leqq P$ ,

where $G_{n-1.n+1}$ is the oriented Grassmann manifold of all oriented $(n-1)$-dimen-
sional linear subspaces of $R^{n+1},$ $C_{n-1.n+1}$ its volume and $\Omega_{n-1.n+1}$ its standard
volume element. Denote by $V(M^{p})$ the volume of $M^{p}$ . We can show (Theorem
4 in \S 4)

(1.2) $\chi(M^{2})=\tau(M^{2})+\frac{1}{2\pi}V(M^{2})$ .

In 1939, Weyl [10] found the formula for the volume of a tube of radius $r$

about $M^{p}$ . The coefficients in the power series expansion of the volume are
expressed by the curvature invariants $k_{e}(M^{p})$ ( $e$ even, $0\leqq e\leqq P$ ) (see (2.1)), which
depend on the intrinsic geometry of $M^{p}$ . Notice that $k_{0}(M^{p})=V(M^{p})$ . Let
$\tau_{e}(M^{p})(1\leqq e\leqq p)$ be the e-th total mean curvature of $M^{p}$ (see (2.2)). Then we
have $\tau(M^{p})=\tau_{p}(M^{p}),$ $\tau_{e}(M^{p})=0$ for $e$ odd, and for $e$ even

(1.3)
$\tau_{e}(M^{p})=\frac{(p-2)!1}{(2\pi)^{p/2}(n-p+e-2)11(le)}k_{e}(M^{p})$

,

where we mean that $m!!=m(m-2)\cdots 4\cdot 2$ or $m!!=m(m-2)\cdots 3\cdot 1$ according as
$m$ is even or odd. S. S. Chern [2] gives the kinematic formula and the linear
kinematic formula in $R^{n}$ . Following Chern, we introduce curvature invariants
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