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The canonical lifting of an ordinary Jacobian variety
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We denote by $k$ a perfect field of characteristic $p$ , with $p>0$ , and by $A=$

$W(k)$ the ring of infinite Witt vectors over $k$ . Let $C_{0}$ be a complete, non-
singular curve of genus $g$ over $k$ ; we say that $C_{0}$ is ordinary if its Jacobian
variety $Jac(C_{0})$ is an ordinary abelian variety, $i$ . $e$ .

$Jac(C_{0})[p](\overline{k})\cong(Z/p)^{g}$ , where $g=genus(C_{0})=\dim(Jac(C_{0}))$ .

Let $(X_{0}, \lambda_{0})$ be a polarized abelian variety and suppose that $X_{0}$ is ordinary.
By a theorem of Serre and Tate (cf. 1.1) it has a canonical lifting $(\mathfrak{X}, \lambda)$ to
$Spec(A)$ .

We study the following problem (cf. Katz [4], p. 138).

PROBLEM. Is the canonical lifting of the Jacobian $(X_{0}, \lambda_{0})=Jac(C_{0})$ of an
ordinary curve $C_{0}$ again a Jacobian?

Note that if $(\mathfrak{X}, \lambda)$ is a polarized abelian variety over $Spec(B)$ , where $B$ is
a discrete valuation ring or a field, we say $(\mathfrak{X}, \lambda)$ is a Jacobian” if there exists
a field $L\supset B$ , and a complete stable curve $D$ over $L$ , such that its canonically

polarized generalized Jacobian variety is:

$Jac(D)\cong(\mathfrak{X}, \lambda)\otimes_{B}L$ .
Note that the answer to the problem is affirmative if $g\leqq 3$ , because by A.

Weil for $g=2$ (cf. [15], p. 37, Satz 2), and by Oort-Ueno for $g\leqq 3$ (cf. [10]), we
know that in this case a principally polarized abelian variety is a Jacobian.

In this note we show that in general the answer to the problem is negative
(cf. Cor. 2.5 below, also cf. Remark 2.6).
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