J. Math. Soc. Japan Vol. 38, No. 3, 1986

A theorem on $P_{\kappa}(\lambda)$

By Thomas JECH

(Received Dec. 7, 1984)

1. Introduction.

Let κ be a regular uncountable cardinal. Consider the set

$$S(\boldsymbol{\kappa}, \boldsymbol{\kappa}^+) = \{ x \in P_{\boldsymbol{\kappa}}(\boldsymbol{\kappa}^+) : |x| = |x \cap \boldsymbol{\kappa}|^+ \}.$$

A question has been raised, notably in [1], [2] and [5], whether $S(\kappa, \kappa^+)$ can be stationary.

By a result of Baumgartner, cf. [1], if $S(\kappa, \kappa^+)$ is stationary then κ is (weakly) inaccessible and 0^{*} exists. We show (in Corollary 4.3) that if $S(\kappa, \kappa^+)$ is stationary then the function $f(\xi) = \xi^+$ on κ has the Galvin-Hajnal norm κ^+ .

2. Some facts about $P_{\kappa}(\lambda)$.

Throughout this paper, κ is a fixed regular uncountable cardinal; all other greek letters denote ordinal numbers. If x is a set of ordinals, then

 \bar{x} = the order type of x;

as usual, |x| is the cardinality of x. For $\lambda \ge \kappa$,

$$P_{\kappa}(\lambda) = \{ x \subset \lambda : |x| < \kappa \}.$$

2.1. DEFINITION ([4]). A set $C \subseteq P_{\kappa}(\lambda)$ is closed if whenever $D \subseteq C$ is a chain under inclusion with $|D| < \kappa$, then $\bigcup D \in C$. C is unbounded if for every $x \in P_{\kappa}(\lambda)$ there is a $y \in C$ with $x \subseteq y$. C is a club if it is closed and unbounded. A set $S \subseteq P_{\kappa}(\lambda)$ is stationary if $S \cap C \neq \emptyset$ for all clubs C.

2.2. PROPOSITION. A subset C of κ is a club iff C is a club in $P_{\kappa}(\kappa)$; also, κ is a club in $P_{\kappa}(\kappa)$.

2.3. PROPOSITION. Let $\kappa \leq \alpha \leq \beta$. If C is a club in $P_{\kappa}(\alpha)$ then the set

 $\{x \in P_{\kappa}(\beta) : x \cap \alpha \in C\}$

is a club in $P_{\kappa}(\beta)$.

Research supported by an NSF grant and by a U.S.-Japan Cooperative Research Grant from the International Division of the National Science Foundation. The paper was written while the author was a Visiting Professor at the University of Hawaii.