Remarks on the fixed point algebras of product type actions on UHF-algebras

By Yoshikazu KATAYAMA

(Received Sept. 19, 1984) (Revised Nov. 5, 1984)

1. Introduction.

In this note we consider a C^* -dynamical system (A, G, α) of product type action, where A is a UHF-algebra and G is a finite group. In [5] and [6], A. Kishimoto and A. J. Munch investigated properties of the C^* -dynamical system (A, G, α) . One of their results is that if G is abelian, then the space of tracial states on the fixed point algebra A^G is n-simplex where the number n is the cardinality of the subgroup of G which is weakly inner in the trace representation of G. If G is a (non-abelian) finite group, the structure of ideals in G^G was investigated in [7] by G is G-invariant, the G-dynamical system G is a UHF-algebra. Since the trace G is G-invariant, the G-dynamical system G is the G-dynamical system of G is an inner automorphism of G is an inner automorp

$$(g\pi)(k)=\pi(g^{-1}kg)$$

for $k \in K$, $g \in G$ and $\pi \in \hat{K}$. By giving an equivalence \sim by $\pi \sim \rho$ $(\pi, \rho \in \hat{K})$ iff $g\pi = \rho$ for some $g \in G$, we have an orbit space \hat{K}/\sim (denoted by \hat{K}/G).

In this note we show that the number of extremal traces on the fixed point algebra A^G is the cardinality of the orbit space \hat{K}/G and we give some conditions under which A^G is a UHF-algebra.

The author wishes to thank Dr. T. Kajiwara for some useful conversation.

2. Main results.

Let A_n be a matrix factor and π_n be a unitary representation of a finite group G into A_n . We define an action α of G on a UHF-algebra $A \equiv \bigotimes_{n=1}^{\infty} A_n$ by $\alpha_g = \bigotimes_{n=1}^{\infty} A d\pi_n(g)$.

We assume throughout that the automorphisms α_s are not inner in A except g=e, the unit in G.