Equivariant cobordism, vector fields, and the Euler characteristic

By Katsuhiro KOMIYA

(Received July 11, 1984)

Introduction.

Throughout this paper G always denotes a finite group, and a G-manifold means a smooth manifold with smooth G-action. Two n-dimensional closed Gmanifolds M and N are G-cobordant, if there exists an (n+1)-dimensional compact G-manifold L with $\partial L = M + N$, where + denotes the disjoint union. Such a manifold L is called a G-cobordism between M and N. If L admits a nonzero G-vector field which is inward normal on M and outward normal on N, then, following Reinhart [7], M and N are called Reinhart G-cobordant, and L a Reinhart G-cobordism between M and N. The aim of this paper is to obtain a necessary and sufficient condition for the existence of a Reinhart Gcobordism between two given G-cobordant closed G-manifolds.

Given a G-manifold M and a subgroup H of G, M^H denotes the H-fixed point set of M and $M^{=H}$ denotes the union of those components of M^H on which H is the minimal isotropy subgroup. If V is a representation of Hcontaining no direct summand of trivial representation, $M^{(H,V)}$ denotes the union of those components of $M^{=H}$ for which the normal representation is isomorphic to V. Then we will obtain

THEOREM 0.1. Let M and N be two G-cobordant closed G-manifolds of dimension n. Suppose that n is even and G is of odd order, or that G is of order 2. Then there exists a Reinhart G-cobordism between them if and only if $\chi(M^{(H,V)})=\chi(N^{(H,V)})$ for any pair (H, V) of a subgroup H of G and a representation V of H, where $\chi()$ denotes the Euler characteristic.

In case *H* is normal in *G*, and *V* is invariant under conjugation, a *G*-vector bundle $E \rightarrow X$ over a *G*-manifold *X* is of type (*H*, *V*) if for any $x \in X$, the isotropy subgroup G_x at *x* is *H*, and the fibre E_x over *x* is isomorphic to *V* as representations of *H*. Let $E_1 \rightarrow X_1$ and $E_2 \rightarrow X_2$ be *G*-vector bundles of type (*H*, *V*) over *k*-dimensional closed *G*-manifolds X_1 and X_2 . They are called

This research was partially supported by Grants-in-Aid for Scientific Research (Nos. 58540033 and 58540034), Ministry of Education, Science and Culture.