J. Math. Soc. Japan Vol. 37, No. 2, 1985

Pointwise multipliers for functions of bounded mean oscillation

By Eiichi NAKAI and Kôzô YABUTA*

(Received Jan. 23, 1984) (Revised April 18, 1984)

1. Introduction.

The purpose of this paper is to characterize the set of pointwise multipliers on $bmo_{\phi}(\mathbf{R}^n)$, which is the function space defined using the mean oscillation and a growth function ϕ .

Janson [2] has characterized pointwise multipliers on $bmo_{\phi}(T^n)$ on the *n*-dimensional torus T^n . We extend his result to the case of the *n*-dimensional Euclidean space \mathbb{R}^n .

To define $bmo_{\phi}(\mathbf{R}^n)$, let I(a, r) be the cube $\{x \in \mathbf{R}^n; |x_i - a_i| \leq r/2, i=1, 2, \dots, n\}$ whose edges have length r and are parallel to the coordinate axes. For a cube I, we denote by |I| the Lebesgue measure of I, by M(f, I) or f_I the mean value of a function f on I, i.e. $|I|^{-1} \int_I f(x) dx$, and by MO(f, I) the mean oscillation of f on I, i.e. $|I|^{-1} \int_I |f(x) - f_I| dx$.

We now define

$$bmo_{\phi}(\mathbf{R}^{n}) = \left\{ f \in L^{1}_{loc}(\mathbf{R}^{n}) ; \sup_{I(a,r)} \frac{MO(f, I(a, r))}{\phi(r)} < +\infty \right\},$$

where ϕ is assumed to be a positive non-decreasing function on $\mathbf{R}_{+}=(0,\infty)$. Such a function is called a growth function. If two growth functions ϕ_{1} and ϕ_{2} are equivalent $(\phi_{1}\sim\phi_{2})$ i.e. there is a constant C>0 such that $C^{-1}\phi_{1}(r)\leq\phi_{2}(r)\leq C\phi_{1}(r)$, then $bmo_{\phi_{1}}(\mathbf{R}^{n})=bmo_{\phi_{2}}(\mathbf{R}^{n})$.

A function g on \mathbb{R}^n is called a pointwise multiplier on $bmo_{\phi}(\mathbb{R}^n)$, if the pointwise multiplication fg belongs to $bmo_{\phi}(\mathbb{R}^n)$ for all f belonging to $bmo_{\phi}(\mathbb{R}^n)$.

Janson's characterization is the following. If ϕ is a growth function and $\phi(r)/r$ is almost decreasing, then a function g is a pointwise multiplier on $bmo_{\phi}(\mathbf{T}^n)$ if and only if g belongs to $bmo_{\phi}(\mathbf{T}^n) \cap L^{\infty}(\mathbf{T}^n)$ where $\phi(r) = \phi(r) / \int_r^1 \phi(t) t^{-1} dt$. (A positive function h(t) is said to be almost decreasing if there

^{*} The second named author was partly supported by Grant-in-Aid for Co-operative Research (No. 57340004), Ministry of Education.