Studies on Hadamard matrices with "2-transitive" automorphism groups

By Noboru ITo*) and Hiroshi Kimura

(Revised Dec. 7, 1982)

§ 1. Introduction.

An Hadamard matrix H of order n is a $\{-1,1\}$-matrix of degree n such that $H H^{t}=H^{t} H=n I$, where t denotes the transposition. It is known that n equals one, two or a multiple of four. In this paper we assume that n is greater than eight. For the basic fact on Hadamard matrices see [1] or [7]. Let P be the set of $2 n$ points $1,2, \cdots, n, 1^{*}, 2^{*}, \cdots, n^{*}$. Then we define an n-subset α_{i} of P as follows: α_{i} contains j or j^{*} according as the (i, j)-entry of H equals +1 or $-1(1 \leqq i, j \leqq n)$. Let $\alpha_{i}^{*}=P-\alpha_{i}$. We call α_{i} and α_{i}^{*} blocks ($1 \leqq i \leqq n$). Let B be the set of $2 n$ blocks $\alpha_{1}, \alpha_{2}, \cdots, \alpha_{n}, \alpha_{1}^{*}, \alpha_{2}^{*}, \cdots, \alpha_{n}^{*}$. Then $M(H)=(P, B)$ is called the matrix design of H. By definition each point belongs to exactly n blocks. By the orthogonality of columns of H each point pair not of the shape $\left\{a, a^{*}\right\}$ belongs to exactly $n / 2$ blocks, and each point trio not containing a point pair of the shape $\left\{a, a^{*}\right\}$ belongs to exactly $n / 4$ blocks. $\left\{a, a^{*}\right\}$ does not belong to any block. Similarly by the orthogonality of rows of H each block pair not of the shape $\left\{\alpha, \alpha^{*}\right\}$ intersects in exactly $n / 2$ points, and each block trio not containing a block pair of the shape $\left\{\alpha, \alpha^{*}\right\}$ intersects in exactly $n / 4$ points.

We assume that $a^{* *}=a$. Then $\alpha^{* *}=\alpha$. Let \mathbb{C} be the group of all permutations σ on P such that σ leaves B as a whole. Then we call \mathbb{B} the automorphism group of $M(H)$. Obviously $\mathbb{C B}$ is isomorphic to the automorphism group of H. Since $\zeta=\prod_{a=1}^{n}\left(a, a^{*}\right)=\prod_{i=1}^{n}\left(\alpha_{i}, \alpha_{i}^{*}\right)$ belongs to the center of \mathbb{C}, \mathscr{S} is imprimitive on P. For the basic facts on permutation groups see [9] or [10]. Now let \bar{P} and \bar{B} be the set of point pairs $\bar{a}=\left\{a, a^{*}\right\}$ and block pairs $\bar{\alpha}=\left\{\alpha, \alpha^{*}\right\}$, where $a \in P$ and $\alpha \in B$, respectively. Then \mathscr{G} may be considered as permutation groups on \bar{P} and on \bar{B}. We notice that ζ is trivial on \bar{P} and on \bar{B}, and that there is no apparent incidence relation between P and \bar{B}. In this paper we assume that \mathfrak{B} on \bar{P} is doubly transitive and that \mathscr{E} on \bar{P} contains a regular normal subgroup \mathfrak{R} on \bar{P}. Then \mathfrak{R} on \bar{P} is an elementary Abelian 2 -group of order n, and so n

[^0]
[^0]: *) This author is partially supported by NSF Grant MCS-7902750.

