Studies on Hadamard matrices with "2-transitive" automorphism groups

By Noboru ITO*' and Hiroshi KIMURA

(Received March 10, 1981) (Revised Dec. 7, 1982)

§1. Introduction.

An Hadamard matrix H of order n is a $\{-1, 1\}$ -matrix of degree n such that $HH^t = H^tH = nI$, where t denotes the transposition. It is known that n equals one, two or a multiple of four. In this paper we assume that n is greater than eight. For the basic fact on Hadamard matrices see [1] or [7]. Let P be the set of 2n points $1, 2, \dots, n, 1^*, 2^*, \dots, n^*$. Then we define an n-subset α_i of P as follows: α_i contains j or j^* according as the (i, j)-entry of H equals +1 or -1 $(1 \le i, j \le n)$. Let $\alpha_i^* = P - \alpha_i$. We call α_i and α_i^* blocks $(1 \le i \le n)$. Let B be the set of 2n blocks $\alpha_1, \alpha_2, \dots, \alpha_n, \alpha_1^*, \alpha_2^*, \dots, \alpha_n^*$. Then M(H) = (P, B) is called the matrix design of H. By definition each point belongs to exactly n blocks. By the orthogonality of columns of H each point pair not of the shape $\{a, a^*\}$ belongs to exactly n/4 blocks. $\{a, a^*\}$ does not belong to any block. Similarly by the orthogonality of rows of H each block trio not containing a block pair of the shape $\{\alpha, \alpha^*\}$ intersects in exactly n/2 points, and each block trio not containing a block pair of the shape $\{\alpha, \alpha^*\}$ intersects in exactly n/2 points.

We assume that $a^{**}=a$. Then $\alpha^{**}=\alpha$. Let \mathfrak{G} be the group of all permutations σ on P such that σ leaves B as a whole. Then we call \mathfrak{G} the automorphism group of M(H). Obviously \mathfrak{G} is isomorphic to the automorphism group of H. Since $\zeta = \prod_{a=1}^{n} (a, a^*) = \prod_{i=1}^{n} (\alpha_i, \alpha_i^*)$ belongs to the center of \mathfrak{G} , \mathfrak{G} is imprimitive on P. For the basic facts on permutation groups see [9] or [10]. Now let \overline{P} and \overline{B} be the set of point pairs $\overline{a} = \{a, a^*\}$ and block pairs $\overline{a} = \{\alpha, \alpha^*\}$, where $a \in P$ and $\alpha \in B$, respectively. Then \mathfrak{G} may be considered as permutation groups on \overline{P} and on \overline{B} . We notice that ζ is trivial on \overline{P} and on \overline{B} , and that there is no apparent incidence relation between \overline{P} and \overline{B} . In this paper we assume that \mathfrak{G} on \overline{P} is doubly transitive and that \mathfrak{G} on \overline{P} contains a regular normal subgroup \mathfrak{N} on \overline{P} . Then \mathfrak{N} on \overline{P} is an elementary Abelian 2-group of order n, and so n

^{*)} This author is partially supported by NSF Grant MCS-7902750.