Complex crystallographic groups II

By Jyoichi KANEKO, Syoshi TOKUNAGA and Masaaki YOSHIDA*)

(Received April 15, 1981)

§ 0. Introduction.

Let E(n) be the complex motion group acting on the n-dimensional complex euclidean space $X \cong \mathbb{C}^n$. A complex crystallographic group is, by definition, a discrete subgroup of E(n) with compact quotient. In a previous paper [6], we studied general properties of the quotient varieties and determined all the two dimensional crystallographic reflection groups.

In this paper, we treat two dimensional complex crystallographic group Γ such that the quotient variety $M=X/\Gamma$ is biholomorphic to the two dimensional projective space P^2 . We list up all such groups (Theorem 1). Generators and fundamental relations are obtained (Theorem 2). Let ϕ denote the natural mapping: $X \rightarrow M$. The coordinate representation of ϕ , the branching locus D and the ramification indices of ϕ on D are determined (Theorem 3). We explicitly give the representation $h: \pi_1(M-D) \rightarrow \Gamma$ and the kernel of h (Theorem 4).

§ 1. Notations and definitions.

The unitary group of size 2 is denoted by U(2). For $A \in U(2)$ and $a \in \mathbb{C}^2$, $(A \mid a) \in \mathbb{E}(2)$ denotes the transformation: $x \to Ax + a$. For a two dimensional complex crystallographic group Γ ,

$$L := \{a \; ; \; (1 \, | \, a) \in \Gamma \}$$

and

$$G := \{A : (A \mid a) \in \Gamma\}$$

are called the lattice and the point group of Γ , respectively. If Γ has the representation $\{(A \mid a); A \in G, a \in L\}$, then we call Γ the semidirect product $G \ltimes L$ of the lattice and the point group.

Definition. Imprimitive reflection group $G(m, p, 2) \subset U(2)$ is the group generated by

$$\begin{pmatrix} 1 \\ 1 \end{pmatrix}$$
, $\begin{pmatrix} \theta^{-1} \\ \theta^{-1} \end{pmatrix}$ and $\begin{pmatrix} \theta^p \\ 1 \end{pmatrix}$, $\theta = \exp{\frac{2\pi\sqrt{-1}}{m}}$.

DEFINITION. An element $g \in \mathbf{E}(2)$ is called a reflection if g is of finite order, $g \neq \text{identity}$ and keeps a line $H(g) \subset X$ pointwise fixed.

^{*} This author was partially supported by Grant-in-Aid for Scientific Research (No. 480130030787), Ministry of Education.