Hadamard's variation of the Green kernels of heat equations and their traces I

By Shin OZAWA

(Received Feb. 7, 1980) (Revised Dec. 3, 1980)

§1. Introduction. Let Ω be a bounded domain in \mathbb{R}^n with smooth boundary γ . Let $\rho(x)$ be a \mathcal{C}^{∞} real valued function on γ and ν_x be the exterior unit normal vector at $x \in \gamma$. For any sufficiently small $\varepsilon \ge 0$, let Ω_{ε} be the bounded domain whose boundary γ_{ε} is defined by

$$\gamma_{\varepsilon} = \{x + \varepsilon \rho(x) \nu_x; x \in \gamma\}.$$

Let $G_{\varepsilon}(x, y)$ be the Green's function of the Dirichlet boundary value problem for the Laplacian, that is, $G_{\varepsilon}(x, y)$ has the following properties:

$$\begin{pmatrix} -\Delta_x G_{\varepsilon}(x, y) = \delta(x-y) & x, y \in \Omega_{\varepsilon} \\ G_{\varepsilon}(x, y) = 0 & x \in \gamma_{\varepsilon}, y \in \Omega_{\varepsilon} \end{pmatrix}$$

We abbreviate $G_0(x, y)$ as G(x, y). For any $x, y \in \Omega$ satisfying $x \neq y$, we put

$$\delta G(x, y) = \lim_{\varepsilon \to 0} \varepsilon^{-1}(G_{\varepsilon}(x, y) - G(x, y)).$$

Then the celebrated Hadamard variational formula is the following:

(1.1)
$$\delta G(x, y) = \int_{r} \frac{\partial G(x, z)}{\partial \nu_{z}} \frac{\partial G(y, z)}{\partial \nu_{z}} \rho(z) d\sigma_{z},$$

where $\partial/\partial\nu_z$ denotes the exterior normal derivative with respect to z and $d\sigma_z$ denotes the surface element of γ at z.

In [7], Hadamard proved the formula (1.1) in the case that $\rho(z)$ did not change its sign. And he also proved it when γ was of class \mathcal{C}^{ω} .

Proof of the formula (1.1) for general $\rho(z) \in C^{\infty}(\gamma)$ can be found, for example, in Garabedian [5], Garabedian-Schiffer [6]. Based on (1.1), many authors derived interesting facts about the Green's function and the results about the theory of functions of one complex variable. See Bergmann-Schiffer [2] and Schiffer-Spencer [12]. Recently, new applications of the formula (1.1) have appeared.

This research was partially supported by Grant-in-Aid for Scientific Research (No. 574061), Ministry of Education.