Homomorphisms of Galois groups of solvably closed Galois extensions

By Kôji UCHIDA

(Received Jan. 7, 1980)

Let k_1 and k_2 be algebraic number fields of finite degrees. Let Ω_1 and Ω_2 be solvably closed Galois extensions of k_1 and k_2 , respectively. Let $G_1 = G(\Omega_1/k_1)$ and $G_2 = G(\Omega_2/k_2)$ be their Galois groups. If G_1 and G_2 are isomorphic as topological groups, it is known that Ω_1 and Ω_2 are isomorphic fields, more precisely:

THEOREM [3]. Let $\sigma: G_1 \rightarrow G_2$ be an isomorphism of topological groups. Then there corresponds a unique isomorphism $\tau: \Omega_2 \rightarrow \Omega_1$ such that $\tau \cdot \sigma(g_1) = g_1 \tau$ for any $g_1 \in G_1$.

Looking at the statement above, it is natural to ask if the isomorphism σ can be replaced by a homomorphism.

CONJECTURE. Let $\sigma: G_1 \rightarrow G_2$ be a continuous homomorphism such that $\sigma(G_1)$ is open in G_2 . Then there corresponds a unique injection $\tau: \Omega_2 \rightarrow \Omega_1$ of fields such that $\tau \cdot \sigma(g_1) = g_1 \tau$ for any $g_1 \in G_1$.

This conjecture means $\tau(\Omega_2)$ is G_1 -invariant, $\tau(k_2) \subset k_1$ and $\Lambda_1 = k_1 \cdot \tau(\Omega_2)$ is a Galois extension of k_1 which corresponds to the kernel of σ . The Galois group $G(\Lambda_1/k_1)$ is isomorphic to an open subgroup of G_2 . Then our conjecture may also be regarded as an extension of the theorem above to a non-solvably-closed extension Λ_1/k_1 .

In the following, let k_1 , k_2 , Ω_1 , Ω_2 , G_1 and G_2 be as above, though we do not assume k_2 is of finite degree in the corollary of Theorem 2. Let $\sigma: G_1 \rightarrow G_2$ be a homomorphism as in the conjecture, except in Theorem 2 where we do not assume $\sigma(G_1)$ is open. Let Λ_1 be the subfield of Ω_1 corresponding to the kernel of σ . Let E_2 be an extension of k_2 contained in Ω_2 , and let U_2 be the corresponding subgroup of G_2 . Let E_1 be the subfield of Ω_1 corresponding to $\sigma^{-1}(U_2)$. We call E_1 is the field corresponding to E_2 by σ .

1. Let \mathfrak{p}_1 be a finite prime of k_1 . Let $G_{\mathfrak{p}_1}$ be a decomposition subgroup of \mathfrak{p}_1 in G_1 . If $\sigma(G_{\mathfrak{p}_1}) \neq (e)$ and if $\sigma(G_{\mathfrak{p}_1})$ is contained in some decomposition subgroup of a finite prime \mathfrak{p}_2 of k_2 , \mathfrak{p}_2 is uniquely determined by \mathfrak{p}_1 . Thus we get a mapping $\phi: \mathfrak{p}_1 \mapsto \mathfrak{p}_2$ from a set of finite primes of k_1 into a set of finite primes of k_2 . We will see below that almost all primes of k_2 are in the image of ϕ .