Immersions of Lie groups

Dedicated to the late Hsien-Chung Wang

By Morikuni Goto

(Received Feb. 5, 1979)

§ 1. Introduction.

Let G and L be topological groups. A group-homomorphism $f: G \rightarrow L$ is said to be an immersion if f is one-one and continuous. When the image $f(G)$ is dense in L the immersion f is called dense, and if f is a homeomorphism to $f(G)$ we shall call f an imbedding.

In this paper we are mainly interested in the case when G is an analytic group (=connected Lie group). First suppose that L is also a Lie group. Immersions of this kind have been studied extensively since Yosida [19], 1937, in which he proved that any (finite-dimensional) irreducible faithful representation of an analytic group is an imbedding. In particular, A. Malcev in [14], 1945, proved the following theorem.

Theorem A. Let G and L be analytic groups, and let $f: G \rightarrow L$ be a dense immersion. Then there exists a one-parameter subgroup (=analytic subgroup of dimension one) A of G such that

$$
L=\overline{f(A)} f(G) .
$$

Theorem A was also obtained in Goto [4], and related subjects to this theorem have been discussed in Hochschild [11], Djoković [2] and others.

Next in [17], 1951, van Est defined an analytic group G to be a ($C A$)-group if the $\operatorname{group} \operatorname{Ad}(G)$ of all inner automorphisms of G is closed in the group $A u t(G)$ composed of all bicontinuous automorphisms of G, and proved the following theorem among other things:

Theorem B. Let G be a (CA)-group with center Z, and let L be a Lie group. If $f: G \rightarrow L$ is an immersion, then
(i) $\overline{f(G)}=\overline{f(Z)} f(G)$.
(ii) If $f \backslash Z$ is an imbedding, then f is an imbedding.

It is easy to see that (i) implies (ii), which extends some results in Yosida [20] and Goto [4]. Immersions into a more general topological group have
 particular, Ōmori in [16], 1966, generalized some part of Theorem B, and the

