J. Math. Soc. Japan Vol. 32, No. 4, 1980

Classes on ZF models

By Masahiro YASUMOTO

(Received Nov. 20, 1978)

Let $\mathcal{A}=(A, E)$ be a model of ZF where A is a set and $E \subseteq A \times A$, and \overline{K} a new predicate letter. We say that a subset K of A is a class of \mathcal{A} if and only if $[\mathcal{A}, K]$ is a model of $ZF(\overline{K})$ where \overline{K} is interpreted by K and the replacement scheme holds for all formulae involving both \in and the new predicate letter \overline{K} . In this paper we prove some results about classes.

A class K of \mathcal{A} is definable if and only if for some formula $\phi(v_0, v_1, \dots, v_n)$ not involving \vec{K} and some elements a_1, a_2, \dots, a_n of $A, K = \{x \in A \mid \mathcal{A} \models \phi(x, a_1, a_2, \dots, a_n)\}$. We denote by def (\mathcal{A}) the set of all definable classes of \mathcal{A} , and say that a class K of \mathcal{A} is undefinable if and only if $K \oplus \det(\mathcal{A})$. Let κ be a strongly inaccessible cardinal. Then V_{κ} is a model of ZF and every subset of V_{κ} is a class of V_{κ} . Since $|\det(V_{\kappa})| = |V_{\kappa}| < 2^{|V_{\kappa}|}$, there exist undefinable classes of V_{κ} . In section 1, we prove the following:

THEOREM. If \mathcal{A} is a standard model of ZF, then there exists an undefinable class of \mathcal{A} .

If \mathcal{A} is a model of ZF, then $[\det(\mathcal{A}), A]$ is a model of GB (Gödel Bernays set theory). Theorem means that if \mathcal{A} is standard, then there exists $N \cong \det(\mathcal{A})$ such that [N, A] is a model of GB.

Let K and K' be classes of \mathcal{A} . K and K' are incompatible if and only if $[\mathcal{A}, K, K'] \nvDash ZF(\bar{K}, \bar{K'})$ where \bar{K} and $\bar{K'}$ are new predicate letters and $ZF(\bar{K}, \bar{K'})$ are axioms of ZF in the language $(\in, \bar{K}, \bar{K'})$. There are many incompatible classes in countable models of ZF (Mostowski [7]). The existence of incompatible classes means that $ZF(\bar{K}, \bar{K'})$ and $ZF(\bar{K}) + ZF(\bar{K'})$ are not equivalent, in other words, there exists a sentence Φ such that $ZF(\bar{K}, \bar{K'}) \vdash \Phi$ but $ZF(\bar{K}) + ZF(\bar{K'}) \nvDash \Phi$. In section 2, we present such a sentence Φ explicitly under some assumption.

1. Undefinable classes.

We begin with some definitions from model theory. Let \mathcal{L} be a first order language and P a class of structures of \mathcal{L} . P is inductive if and only if the union of any chain $M_0 \subseteq M_1 \subseteq \cdots \subseteq M_\alpha \subseteq \cdots (\alpha < \lambda)$ of structures from P is again in P. Let $\phi(v_1, v_2, \cdots, v_n)$ be a formula of \mathcal{L} . ϕ is said to be P-persistent