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\S 0. Introduction.

Concerning the analysis of wave propagation in random media, S. Ogawa
[7] introduced a new type of partial differential equation of first order with
a random coefficient:

(0.1) $\frac{\partial u}{\partial t}(t, x ; \omega)+\{\dot{B}_{t}(\omega)+b(t, x)\}\frac{\partial u}{\partial x}(t, x ; \omega)$

$=c(t, x)u(t, x ; \omega)+d(t, x)$ ,

$(t, x)\in[0, T]\times R^{1}$ , $ T<\infty$ ,

where $\dot{B}_{t}(\omega)$ is the white noise. He constructed a solution of Cauchy problem
of equation (0.1) with given initial data

(0.2) $u(0, x;\omega)=\phi(x)$ .
His main tools are a stochastic integral which he defined and the concept

of the differentiation $\frac{\partial X_{t}}{\partial B_{t}}$ of a stochastic process $X_{t}$ with respect to the

Brownian motion $B_{t}$ .
Here, in this paper, we consider a natural extension of his equation:

(0.3) $\frac{\partial u}{\partial t}(t, x;\omega)+\sum_{i.j=1}^{a}\{a_{ij}(t, x)\dot{B}_{t}^{j}(\omega)+b_{i}(t, x)\}\frac{\partial u}{\partial x_{i}}(t, x;\omega)$

$=c(t, x)u(t, x ; \omega)+d(t, x)$ ,

$(t, x)\in[0, T]\times G$ ,

with initial data (0.2) and boundary conditions at $\partial G$ , where $G$ is a given

region in $R^{d}(d\geqq 1)$ and $\dot{B}_{t}(\omega)=\{\dot{B}_{t}^{j}(\omega)\}_{j=1}^{d}$ is the d-dimensional white noise.
More precisely, we construct a solution of the equation (0.3) for


