Construction of a solution of random transport equation with boundary condition

By Tadahisa FUNAKI

(Received March 1, 1978) (Revised Jan. 16, 1979)

§0. Introduction.

Concerning the analysis of wave propagation in random media, S. Ogawa [7] introduced a new type of partial differential equation of first order with a random coefficient:

(0.1)
$$\frac{\partial u}{\partial t}(t, x ; \omega) + \{\dot{B}_{t}(\omega) + b(t, x)\}\frac{\partial u}{\partial x}(t, x ; \omega)$$
$$= c(t, x)u(t, x ; \omega) + d(t, x),$$
$$(t, x) \in [0, T] \times R^{1}, \quad T < \infty,$$

where $\dot{B}_i(\omega)$ is the white noise. He constructed a solution of Cauchy problem of equation (0.1) with given initial data

$$(0.2) u(0, x; \omega) = \phi(x).$$

His main tools are a stochastic integral which he defined and the concept of the differentiation $\frac{\partial X_t}{\partial B_t}$ of a stochastic process X_t with respect to the Brownian motion B_t .

Here, in this paper, we consider a natural extension of his equation:

(0.3)
$$\frac{\partial u}{\partial t}(t, x; \omega) + \sum_{i,j=1}^{d} \{a_{ij}(t, x) \dot{B}_{i}^{j}(\omega) + b_{i}(t, x)\} \frac{\partial u}{\partial x_{i}}(t, x; \omega)$$
$$= c(t, x)u(t, x; \omega) + d(t, x),$$
$$(t, x) \in [0, T] \times G,$$

with initial data (0.2) and boundary conditions at ∂G , where G is a given region in R^d $(d \ge 1)$ and $\dot{B}_t(\omega) = \{\dot{B}_t^j(\omega)\}_{j=1}^d$ is the d-dimensional white noise. More precisely, we construct a solution of the equation (0.3) for