Non-singular bilinear maps which come from some positively filtered rings

By Yôichi MIYASHITA

(Received Dec. 18, 1975)

Let K be a commutative ring, and K[X] the polynomial ring over K. Then it is known that K[X]/(f(X)) is a free Frobenius extension of K (in the sense of [3]) for a monic polynomial f(X) ([5],[2]). The purpose of this paper is to extend this result to non-commutative rings. To this end we take a "positively filtered ring" satisfying some condition in place of a "polynomial ring" K[X], and an ideal generated by a monic polynomial is replaced by a one sided ideal generated by a monic submodule, which is a generalization of a monic polynomial. Main results are Theorem 9, 11, and 12. In particular, Theorem 12 yields that K[X] is a free Frobenius extension of K[f(X)] for a monic polynomial f(X) over a commutative ring K, and Corollary to Theorem 12 is a generalization of [5; Theorem 2.1].

§ 1.

All rings are associative, but not necessarily commutative. Every ring has 1, which is preserved by homomorphisms, inherited by subrings and acts as the identity operator on modules. Let $_AM$, $_AN$ be left A-modules over a ring A. By $\operatorname{Hom}_r(_AM,_AN)$ we denote the module of left A-homomorphisms from $_AM$ to $_AN$ acting on the right side. We denote $\operatorname{Hom}_r(_AM,_AM)$ by $\operatorname{End}_r(_AM)$. Similarly Hom_l is used for right A-modules and right A-homomorphisms acting on the left side. Let $_AM_{A'}$ be a left A, right A'-module. If $_AM$ is finitely generated, projective, and generator, and $\operatorname{End}_r(_AM) \cong A'$ under the mapping induced by $M_{A'}$, we call $_AM_{A'}$ an invertible module. It is well known that this is right-left symmetric.

Let $R \supseteq K$ be rings, and $R_0 = K \subseteq R_1 \subseteq R_2 \subseteq \cdots$ an ascending sequence of additive subgroups such that $R = \bigcup R_i$ and $R_i \cdot R_j \subseteq R_{i+j}$ for all $i, j \ge 0$. We call $R = \bigcup R_i$ a positively filtered ring over K. If, further, $R = \bigcup R_i$ satisfies the following condition we call $R = \bigcup R_i$ a (*)-positively filtered ring over K:

(*) Each R_n/R_{n-1} $(n \ge 1)$ is an invertible module as a K-bimodule, and $(R_n/R_{n-1}) \bigotimes_K (R_m/R_{m-1}) \cong R_{n+m}/R_{n+m-1}$ canonically, for all $n, m \ge 1$.

We denote this by $K[R_1]$, and put $R_i=0$, if i<0. For any $i\geq 0$, we put $gr_iR=R_i/R_{i-1}$. It is easily seen that the latter half of (*) can be replaced by