Non-singular bilinear maps which come from some positively filtered rings

By Yôichi MiYashita

(Received Dec. 18, 1975)

Let K be a commutative ring, and $K[X]$ the polynomial ring over K. Then it is known that $K[X] /(f(X))$ is a free Frobenius extension of K (in the sense of [3]) for a monic polynomial $f(X)$ ([5], [2]). The purpose of this paper is to extend this result to non-commutative rings. To this end we take a "positively filtered ring" satisfying some condition in place of a "polynomial ring" $K[X]$, and an ideal generated by a monic polynomial is replaced by a one sided ideal generated by a monic submodule, which is a generalization of a monic polynomial. Main results are Theorem 9, 11, and 12. In particular, Theorem 12 yields that $K[X]$ is a free Frobenius extension of $K[f(X)]$ for a monic polynomial $f(X)$ over a commutative ring K, and Corollary to Theorem 12 is a generalization of [5; Theorem 2.1].

§ 1.

All rings are associative, but not necessarily commutative. Every ring has 1 , which is preserved by homomorphisms, inherited by subrings and acts as the identity operator on modules. Let ${ }_{A} M,{ }_{A} N$ be left A-modules over a ring A. By $\operatorname{Hom}_{r}\left({ }_{A} M,{ }_{A} N\right)$ we denote the module of left A-homomorphisms from ${ }_{A} M$ to ${ }_{A} N$ acting on the right side. We denote $\operatorname{Hom}_{r}\left({ }_{A} M,{ }_{A} M\right)$ by $\operatorname{End}_{r}\left({ }_{A} M\right)$. Similarly Hom_{l} is used for right A-modules and right A-homomorphisms acting on the left side. Let ${ }_{A} M_{A^{\prime}}$ be a left A, right A^{\prime}-module. If ${ }_{A} M$ is finitely generated, projective, and generator, and $\operatorname{End}_{r}\left({ }_{A} M\right) \leadsto A^{\prime}$ under the mapping induced by $M_{A^{\prime}}$, we call ${ }_{A} M_{A^{\prime}}$ an invertible module. It is well known that this is right-left symmetric.

Let $R \supseteqq K$ be rings, and $R_{0}=K \subseteq R_{1} \subseteq R_{2} \cong \cdots$ an ascending sequence of additive subgroups such that $R=\cup R_{i}$ and $R_{i} \cdot R_{j} \cong R_{i+j}$ for all $i, j \geqq 0$. We call $R=\cup R_{i}$ a positively filtered ring over K. If, further, $R=\cup R_{i}$ satisfies the following condition we call $R=\cup R_{i}$ a (*)-positively filtered ring over K :
(*) Each $R_{n} / R_{n-1}(n \geqq 1)$ is an invertible module as a K-bimodule, and $\left(R_{n} / R_{n-1}\right) \otimes_{K}\left(R_{m} / R_{m-1}\right) \simeq R_{n+m} / R_{n+m-1}$ canonically, for all $n, m \geqq 1$.

We denote this by $K\left[R_{1}\right]$, and put $R_{i}=0$, if $i<0$. For any $i \geqq 0$, we put $g r_{i} R=R_{i} / R_{i-1}$. It is easily seen that the latter half of (*) can be replaced by

