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Introduction.

In this paper we shall study certain families of foliations with structures
defined below. Our purpose is to prove a vanishing theorem for their charac-
teristic classes.

Let $M$ be a smooth n-manifold and $TM$ its tangent bundle. Let $E$ be an
integrable smooth $(n-q)$ -subbundle of $TM$. A foliated structure is then given
on $M$ by a system of local integrals $\mathcal{F}=\{f_{\lambda}\}$ of $E$ , which satisfies the atlas
condition: for each pair of local submersions $f_{\lambda}$ : $U_{\lambda}\rightarrow R^{q}$ and $f_{\mu}$ : $U_{\mu}\rightarrow R^{q}$ , and
for each $x\in U_{\lambda}\cap U_{\mu}$ , there exists a local diffeomorphism $\gamma_{\mu\lambda}^{x}$ with $f_{\mu}=\gamma_{\mu\lambda}^{x}\circ f_{\lambda}$ in
some neighborhood of $x$. $\mathcal{F}$ is called a G-foliation if we can take the $\{\gamma_{\mu\lambda}^{x}\}$ as
local automorphisms of some G-structure. The principal object of this paper
is a study of G-foliations associated with second order G-structures. Among
those structures the conformal or projective ones have been known to be the
most significant (cf. Ochiai [19]).

Our main theorem is stated as follows:
MAIN THEOREM. Let $\mathcal{F}$ be a conformal (resp. projective) foliation of codi-

mension $q$ on a smooth manifold $M$ (see \S 1 for the precise definition). SuPpose
$q\geqq 3$ (resp. $q\geqq 2$). Then for the normal bundle $\nu=TM/E$ of $\mathcal{F}$ , we have

$(^{*})$ Pont $(\nu;R)=0$ for $k>q$ ,

where Pont $(\nu;R)$ contained in $H^{k}(M;R)$ is the k-th homogeneous part of the
Pontrjagin ring generated by the real Pontrjagin classes of $\nu$ .

Note that each riemannian foliation (see \S 1) may be regarded as a con-
formal as well as a projective one. In the course of the proof of the Main
Theorem, it can be seen that $(^{*})$ holds for every riemannian foliation (cf. \S 4).
This is a theorem of Pasternack [21]. A riemannian foliation is a G-foliation
associated with the riemannian structure, a first order G-structure, and is
nothing but a foliation with bundle-like metric in the sense of Reinhart [23].

Our theorem may be illustrated as follows. As is well-known, smooth
fibre bundles serve as trivial examples of foliations. It is not difficult to verify


