On characteristic classes of riemannian, conformal and projective foliations

By Seiki NISHIKAWA and Hajime SATO

(Received Oct. 5, 1974)

Introduction.

In this paper we shall study certain families of foliations with structures defined below. Our purpose is to prove a vanishing theorem for their characteristic classes.

Let M be a smooth n-manifold and TM its tangent bundle. Let E be an integrable smooth (n-q)-subbundle of TM. A foliated structure is then given on M by a system of local integrals $\mathcal{F}=\{f_{\lambda}\}$ of E, which satisfies the atlas condition: for each pair of local submersions $f_{\lambda}:U_{\lambda}\to R^q$ and $f_{\mu}:U_{\mu}\to R^q$, and for each $x\in U_{\lambda}\cap U_{\mu}$, there exists a local diffeomorphism $\gamma_{\mu\lambda}^x$ with $f_{\mu}=\gamma_{\mu\lambda}^x\circ f_{\lambda}$ in some neighborhood of x. \mathcal{F} is called a G-foliation if we can take the $\{\gamma_{\mu\lambda}^x\}$ as local automorphisms of some G-structure. The principal object of this paper is a study of G-foliations associated with second order G-structures. Among those structures the conformal or projective ones have been known to be the most significant (cf. Ochiai [19]).

Our main theorem is stated as follows:

MAIN THEOREM. Let \mathcal{F} be a conformal (resp. projective) foliation of codimension q on a smooth manifold M (see § 1 for the precise definition). Suppose $q \geq 3$ (resp. $q \geq 2$). Then for the normal bundle $\nu = TM/E$ of \mathcal{F} , we have

(*)
$$\operatorname{Pont}^{k}(\nu; \mathbf{R}) = 0 \quad \text{for } k > q,$$

where $\operatorname{Pont}^k(\nu; \mathbf{R})$ contained in $H^k(M; \mathbf{R})$ is the k-th homogeneous part of the Pontrjagin ring generated by the real Pontrjagin classes of ν .

Note that each riemannian foliation (see § 1) may be regarded as a conformal as well as a projective one. In the course of the proof of the Main Theorem, it can be seen that (*) holds for every riemannian foliation (cf. § 4). This is a theorem of Pasternack [21]. A riemannian foliation is a G-foliation associated with the riemannian structure, a first order G-structure, and is nothing but a foliation with bundle-like metric in the sense of Reinhart [23].

Our theorem may be illustrated as follows. As is well-known, smooth fibre bundles serve as trivial examples of foliations. It is not difficult to verify