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Introduction.

We have widely extended the Krull-Remak-Schmidt-Azumaya’s theorem in
[4], [5], [6], [7], [8] and [11] and succeeded to prove some of main theorems
by virtue of the theory of category ([12], Theorem 20.1 on page 30 and [13],

Theorem 2). However, most statements in the above papers are related to
modules, but not to categories. Thus, it is natural to expect to be able to
prove all results in the frame of ring theory.

Recently, T. Ishii [10] succeeded to prove substantially the implication
from i) to ii) in [11] in the frame of ring theory. Hence, the remaining is
essentially Theorem 2 in [6].

In this short note, we shall give a ring theoretical proof of the above
theorem by making use of an idea given in [10]. First, we shall translate a
factor category induced from completely indecomposable modules into a cate-
gory of semi-simple modules through equivalent functors, which gives a sim-
pler proof of [4], Theorem 7, however it does not work on category of pro-
jectives or injectives (see [4] and [6]). Finally, we shall give a ring theoretical
proof of [6], Theorem 2 by making great use of results in [10].

\S 1. Factor categories.

Throughout we shall assume that $R$ is a ring with identity and all R-
modules are unitary right R-modules. We shall denote the category of all R-
modules by $\mathfrak{M}_{R}$ . Let $\{T_{\alpha}\}_{I}$ be a set of R-modules. We shall define a full
subadditive category $\mathfrak{T}$ induced from $\{T_{\alpha}\}_{I}$ (see [4]). Every objects in $\mathfrak{T}$ con-
sist of all R-modules which are isomorphic to $\sum_{K}\oplus T_{\delta}$ , where $T_{\delta}’ s$ are some
members in $\{T_{\alpha}\}_{I}$ and the set of morphisms coincides with the set of R-
homomorphisms. Let $\mathfrak{C}$ be an ideal in $\mathfrak{T}$ (see [2] or [9]). We define the
factor category $\mathfrak{T}/\mathfrak{C}$ as follows: the objects in $\mathfrak{T}/\mathfrak{C}$ coincide with those in $\mathfrak{T}$

and $[T, T^{\prime}]_{\mathfrak{T}/\mathfrak{C}}=Hom_{R}(T, T^{\prime})/(Hom_{R}(T, T^{\prime})\cap \mathfrak{C})$ for $T,$ $T^{\prime}$ in $\mathfrak{T}/\mathfrak{C}$ .


