Pinching theorem for the real projective space

By Katsuhiro Shiohama

(Received Dec. 20, 1972) (Revised May 17, 1973)

§1. Introduction.

Let M be an *n*-dimensional connected and complete Riemannian manifold whose sectional curvature K satisfies

(1.1) $1/4 < \delta \leq K \leq 1$ for any plane section.

If M is simply connected and $\delta \doteq 0.85$, then M is diffeomorphic to the standard sphere (see [5]). In the present paper we shall establish a differentiable pinching theorem for the real projective space. Our pinching number is independent of the dimension.

MAIN THEOREM. Let M be a connected and complete Riemannian manifold with (1.1). Assume that the fundamental group $\pi_1(M)$ of M is

(1.2)
$$\pi_1(M) = Z_2$$

Then there exists a constant $\delta_0 \in (1/4, 1)$ such that

 $(1.3) \qquad \qquad \delta > \delta_0$

implies M to be diffeomorphic to the real projective space.

§2. Preliminaries.

Throughout this paper, let M satisfy both (1.1) and (1.2). We denote by d the distance function on M with respect to the Riemannian metric. The diameter d(M) of M is defined by $d(M) := Max \{d(x, y); x, y \in M\}$ and we set d(p, q) := d(M). Let \tilde{M} be the universal Riemannian covering manifold of M and π the covering projection. For any point $x \in M$, we denote by $\tilde{x}_1, \tilde{x}_2 \in \tilde{M}$ the elements of the inverse image $\pi^{-1}(x)$, and by C(x) the cut locus of x. Under the assumptions (1.1) and (1.2), we see in [4] that

$$\pi/2 \leq d(x, C(x)) \leq \pi/2\sqrt{\delta}, \qquad \pi/2 \leq d(M) \leq \pi/2\sqrt{\delta}$$

hold for any $x \in M$. Since for any $x \in M$ and any $y \in C(x)$, each minimizing geodesic from x to y has no conjugate pair, they are joined by two and just two distinct minimizing geodesics. Let E be defined by