Pinching theorem for the real projective space

By Katsuhiro Shiohama

(Received Dec. 20, 1972)
(Revised May 17, 1973)

§ 1. Introduction.

Let M be an n-dimensional connected and complete Riemannian manifold whose sectional curvature K satisfies

$$
\begin{equation*}
1 / 4<\delta \leqq K \leqq 1 \quad \text { for any plane section. } \tag{1.1}
\end{equation*}
$$

If M is simply connected and $\delta \doteqdot 0.85$, then M is diffeomorphic to the standard sphere (see [5]). In the present paper we shall establish a differentiable pinching theorem for the real projective space. Our pinching number is independent of the dimension.

Main Theorem. Let M be a connected and complete Riemannian manifold with (1.1). Assume that the fundamental group $\pi_{1}(M)$ of M is

$$
\begin{equation*}
\pi_{1}(M)=Z_{2} . \tag{1.2}
\end{equation*}
$$

Then there exists a constant $\delta_{0} \in(1 / 4,1)$ such that

$$
\begin{equation*}
\delta>\delta_{0} \tag{1.3}
\end{equation*}
$$

implies M to be diffeomorphic to the real projective space.

§ 2. Preliminaries.

Throughout this paper, let M satisfy both (1.1) and (1.2). We denote by d the distance function on M with respect to the Riemannian metric. The diameter $d(M)$ of M is defined by $d(M):=\operatorname{Max}\{d(x, y) ; x, y \in M\}$ and we set $d(p, q):=d(M)$. Let \tilde{M} be the universal Riemannian covering manifold of M and π the covering projection. For any point $x \in M$, we denote by $\tilde{x}_{1}, \tilde{x}_{2}$ $\in \tilde{M}$ the elements of the inverse image $\pi^{-1}(x)$, and by $C(x)$ the cut locus of x. Under the assumptions (1.1) and (1.2), we see in [4] that

$$
\pi / 2 \leqq d(x, C(x)) \leqq \pi / 2 \sqrt{\delta}, \quad \pi / 2 \leqq d(M) \leqq \pi / 2 \sqrt{\delta}
$$

hold for any $x \in M$. Since for any $x \in M$ and any $y \in C(x)$, each minimizing geodesic from x to y has no conjugate pair, they are joined by two and just two distinct minimizing geodesics. Let E be defined by

