On certain nonlinear evolution equations

By Jiro WATANABE

(Received May 22, 1972)

§ 1. Introduction.

We consider nonlinear evolution equations of the form

$$\frac{d}{dt} u(t) + A(t)u(t) \ni f(t, u(t)), \qquad 0 \le t \le T$$

in a real Hilbert space H. Here, for each fixed t, A(t) is a (possibly) multivalued nonlinear operator in H of the form $\partial \varphi^t$ (subdifferential of a lower semicontinuous convex function φ^t from H into $(-\infty, \infty]$, $\varphi^t \not\equiv \infty$), while $f(t, \cdot)$ is continuous from the strong to the weak topology of H and $f(t, \cdot) - \beta(t) \cdot$ is dissipative in H for some Lebesgue integrable function β on [0, T].

We denote the inner product and the norm in H by (,) and $\| \|$ respectively. Let φ be a lower semicontinuous convex function from H into $(-\infty, \infty]$. The effective domain of φ is defined by $\{u \in H; \varphi(u) < \infty\}$. The subdifferential $\partial \varphi$ of φ is defined by $\partial \varphi(u) = \{w \in H; \varphi(v) \ge \varphi(u) + (w, v - u) \text{ for all } v \in H\}$ for each $u \in H$, and the domain of the subdifferential $\partial \varphi$ is defined by $D(\partial \varphi) = \{u \in H; \partial \varphi(u) \ne \emptyset\}$.

Let T be a positive constant. For each $t \in [0, T]$, let φ^t be a lower semi-continuous convex function from H into $(-\infty, \infty]$ with nonvoid effective domain, and suppose that $\{\varphi^t; 0 \le t \le T\}$ satisfies the following three conditions:

- (I) The effective domain D of φ^t is independent of t.
- (II) For every r > 0, there exist two positive constants c_r and c'_r such that

$$|\varphi^{s}(u) - \varphi^{t}(u)| \leq |s - t| \cdot [c_r \varphi^{t}(u) + c_r']$$

holds if $0 \le s$, $t \le T$, $u \in D$ and $||u|| \le r$.

(III) For some $b \in D$, b is in $D(\partial \varphi^t)$ for almost all $t \in [0, T]$ and $|||\partial \varphi^t(b)||| \equiv \min\{||v|| : v \in \partial \varphi^t(b)\}$ is Lebesgue integrable in $0 \le t \le T$. (See Corollary 3.4.)

Let f be a map of $[0, T] \times H$ into H, and suppose that f satisfies the following three conditions:

(IV) For each fixed $u \in H$, f(t, u) is strongly measurable in $0 \le t \le T$, and for each fixed $t \in [0, T]$ it is continuous from the strong to the weak topology of H.