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We shall assume, throughout this paper, that Riemannian manifolds are
connected and of dimension $>2$ , their metrics are positive-definite, and mani-
folds and diffeomorphisms are of differentiability class $C^{\infty}$ .

Let $M$ and $M^{*}$ be Riemannian manifolds with metric tensor $g$ and $g^{*}$

respectively, and $f$ a diffeomorphism of $M$ onto $M^{*}$ . If the induced metric
$f^{*}g^{*}$ of $g^{*}$ by $f$ is related to $g$ by

$f^{*}g^{*}=\rho^{-2}g$ ,

then $f$ is called a conformal diffeomorphism of $M$ onto $M^{*}$ , where $\rho$ is a posi-
tively valued scalar field on $M$. If the scalar field $\rho$ satisfies the equation

$\nabla\nabla\rho=\phi g$ ,

$\nabla$ indicating covariant differentiation and $\phi$ being a scalar field, then the
diffeomorphism $f$ is called a concircular one, which carries Riemannian circles
of $M$ to those of $M^{*}$ . If $\rho$ is a constant or equal to 1, then $f$ is said to be
homothetic or isometric, respectively.

THEOREM 1. Let $M$ and $M^{*}$ be complete Riemannian manifolds with par-
allel Ricci tensor. If there is a non-isometric conformal diffeomorphism $f$ of
$M$ onto $M^{*}$ , then $f$ is homothetic or both the manifolds $M$ and $M^{*}$ are isometric
to the sphere.

THEOREM 2. Let $M$ be a complete Riemannian manifold with parallel Ricci
tensor. If $M$ admits a non-isometric conformal transformation $f$, then occurs
one of the following two cases:

(1) $f$ is homothetic and $M$ is $a$ Euclidean space, $or$

(2) $M$ is isometric to the sphere.
The first and principal part of Theorem 1 was proved by N. Tanaka [6]

by a group-theoretic method under some additional conditions on Ricci ten-
sors of $M$ and $M^{*}$ . Then T. Nagano [5] dealt with the cases excepted by
Tanaka, showed that $f$ is properly conformal only in the case where both $M$

and $M^{*}$ are Einstein manifolds of positive curvature, and completed Theorem


