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The purpose of this note is to indicate two simple facts, of which the
first one is almost obvious, once it is formulated:

THEOREM 1. If a complex projective non-singular variety $V$ has no defor-
mation, then $V$ is biregularly equivalent to a projective variety defined over an
algebraic number field.

Here we say that $V$ has no deformation if $H^{1}(V, \Theta)=0$ , where $\Theta$ denotes
the sheaf of germs of holomorphic sections of the tangent bundle of $V$ . Calabi
and Vesentini [1] have proved that $H^{1}(V, \Theta)=0$ if $V$ is the quotient $ S/\Gamma$ of
an irreducible bounded symmetric domain $S$ of dimension $>1$ by a discontinuous
group $\Gamma$ operating freely on $S$ such that $ S/\Gamma$ is compact. (See also [4], [5],
[11].) Therefore Th. 1 shows that such a quotient has a model defined over
an algebraic number field.

To state the second fact, let $C_{p}(N, m, d)$ denote the set of all the Chow
points of positive cycles of dimension $m$ and degree $d$ in the projective space
of dimension $N$, defined with respect to a universal domain of characteristic
$p\geqq 0$ . It is well known that $C_{p}(N, m, d)$ is a Zariski closed set in a certain
projective space, which is defined by equations with coefficients in the prime
field. Then one can ask the following question:

$(Q)$ Is every absolutely irreducible component of $C_{p}(N, m, d)$ defined over
the prime field $i^{1)}$

The answer is negative if the characteristic is $0$ :
THEOREM 2. There exist positive integers $N,$ $m,$ $d$ such that $C_{0}(N, m, d)$ has

a component which is not defined over the rational number field.
Such a component will be obtained so as to contain the Chow point of a

certain variety without deformation. This is why we present these two theo-
rems together. We shall also show in the last section that the answer to the
question $(Q)$ is still negative even if the characteristic is positive.

1) I thank S. Lichtenbaum for reminding me of this question.


