On the prime ideal theorem

Dedicated to Professor S. Iyanaga on his 60th birthday

By Takayoshi Mitsui

(Received Aug. 31, 1967)

Let K be an algebraic number field. Let $\pi_{K}(x)$ be the number of the prime ideals \mathfrak{p} with $N(\mathfrak{p}) \leqq x$, then we have the following asymptotic formula;

$$
\begin{equation*}
\pi_{K}(x)=\int_{2}^{x} \frac{d t}{\log t}+O\left(x \exp \left(-c(\log x)^{1 / 2}\right)\right) \tag{1}
\end{equation*}
$$

(Landau [2], Satz 191). As a special case, if K is the rational number field, we have the formula;

$$
\begin{equation*}
\pi(x)=\sum_{p \leqq x} 1=\int_{2}^{x} \frac{d t}{\log t}+O\left(x \exp \left(-c(\log x)^{1 / 2}\right)\right) \tag{2}
\end{equation*}
$$

which was first proved, in 1899, by de la Vallée Poussin. Since then, the remainder term of (2) has been improved by many authors; to obtain these improvements, the method of trigonometrical sums is very important. (Cf. Prachar [3], Titchmarsh [4].)

The purpose of this paper is to improve the remainder term of (1). Our main result is stated as follows;

Main Theorem. Let K be an algebraic number field. Let $\pi_{K}(x)$ be the number of the prime ideals whose norms are less than x. Then we have

$$
\pi_{K}(x)=\int_{2}^{x} \frac{d t}{\log t}+O\left(x \exp \left(-c \frac{(\log x)^{3 / 5}}{(\log \log x)^{1 / 5}}\right)\right)
$$

We shall begin by proving the following theorem concerning trigonometrical sums, which will be regarded as a generalization of the theorem of Vinogradov [5] and will be fundamental for the proof of Main Theorem;

Theorem I. Let a be an ideal of K. Let $L(\mathfrak{a})$ be the set of the principal ideals divisible by \mathfrak{a}. Let t be a large number, and A and B two real numbers such that

$$
\exp \left((\log t)^{2 / 3}\right) \leqq A<B \leqq 2 A<2 t^{6 n / 5}
$$

where n is the degree of K. We define a trigonometrical sum $S(t ; A, B)$ as follows;

$$
S(t ; A, B)=\sum_{\substack{b \in L(a) \\ A \leqq N b<B}} \exp (2 \pi i t \log N(6)) .
$$

