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Introduction

Following M. Obata [4], we denote by $M$ a manifold of even dimension $2n$

with an almost complex structure $F$, and by $H(x),$ $ x\in j\psi$, the homogeneous
holonomy group of $1\psi$ with respect to a natural connection, $i$ . $e.$ , an affine con-
nection with respect to which $F$ is covariant constant. $A(M)$ denotes the
group of all affine transformations of $1\psi$ onto itself and $A_{0}(M)$ the connected
component of the identity of $A(M)$ . $QL(l, R)$ denotes the real representation
of the quaternion linear group $QL(l, C)$ . We assume that $H(x)$ is irreducible
in $R$ . The following theorem was proved in [4].

THEOREM A. If $n$ is even, $n=21$, and $H(x)$ is not a subgroup of $QL(l, R)$ ,

or if $n$ is odd, then $A_{0}(M)$ preserves the almost complex structure. If $n$ is even,
$n=2l$, and $H(x)$ is a subgroup of $QL(l, R)$ , then $1\downarrow I$ has three independent almost
complex structure $F,$ $G$ and $H$ such that $FG=-GF=H,$ $GH=-HG=F,$ $HF$

$=-FH=G$ and they are all parallel. $A(lM)$ acts on the vector space spanned
by $F,$ $G$ and $H$ as a group of orthogonal transformations. Furthermore these
orthogonal transformations belong to $SO(3)$ in the vector space.

On the other hand, the notion of $\Pi$-structure on a differentiable manifold
of any dimension $m$ (not necessarily even) was introduced by D. C. Spencer
[6]. (The name ’ $\Pi$-structure ‘ was given by G. Legrand [1].) It is one of the
generalizations of the almost complex structure. Then the question arises if
$A(A/V)$ preserves the $\Pi$-structure. An answer to this question will be given
in \S 2.1 as Theorem 2.

In \S 1 we shall summarize briefly the known results on the $\Pi$-structure
and the $\Pi$ -connection. In \S 2, we shall prove the main result.
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