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On a smoothing operator for the wave equation.
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1. Introduction. The Cauchy problem for the classical wave equation

$\coprod_{n}u=(\frac{\partial^{2}}{\partial x_{0^{2}}}-\sum_{i=1}^{n-1}\frac{\partial^{2}}{\partial x_{i^{2}}})u=f(x)$

has been the subject of many investigations for more than half a century.
During this time several formulas have been deduced for the solution of this
problem with the Cauchy data given on the plane $x_{0}=0$ . The difficulties in
obtaining explicit formulas all center around the fact that the direct methods
of integration lead to singular integrals. These difficulties have been over-
come by various methods which either avoid singular integrals or select the
appropriate “ part “ of such integrals. Among the latter methods the best
known is that introduced by Hadamard and developed in his lectures on the
Cauchy problem [6] (numbers in brackets refer to the bibliography at the
end of the paper). This work has been extended by Bureau in a number of
papers (see, for example, [7], [8]). Among the methods which seek to avoid
singular integrals the most recent seem to be those of Weinstein [9], Diaz
and Martin [10] and M. Riesz [1]. The work of Riesz on the wave equation
has been extended by Garding [2] to the class of linear hyperbolic equations
with constant coefficients. This method depends on the analytic continuation
of certain integrals with respect to a complex parameter. Subsequently Leray
[3] generalizing the Riesz-Garding method, showed that smoothing operators
could be introduced in order to avoid singular integrals and re-derived the
Riesz formulas for the wave equation.

In this paper we shall show that a suitable smoothing operator for the
wave equation is simply $\partial^{m}/\partial x_{0}^{m}$ for $m$ properly chosen and derive new for-
mulas for the solution of the Cauchy problem with data given on the plane
$x_{0}=0$ . At the same time we shall show that it is not difficult to construct a
solution of the equation
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