On some relations concerning the operations P_{α} and S_{α} on classes of sets.

By Tadashi OHKUMA

(Received March 3, 1958) (Revised Dec. 24, 1958)

Introduction.

As extensions of the σ -operation and δ -operation which appear in the theory of usual Borel sets, operations S_{α} and P_{α} were already considered in [1], [2] and [3] (cf. Def. 1). Especially in [1] and [2] a condition under which $P_{\alpha}S_{\beta}(K)$ is included in $S_rP_{\delta}(K)$ for any class K of sets is obtained. Referring to these results, we have attempted to study the conditions under which some inequalities or equalities hold between $P_{\delta}S_{\epsilon}$, $P_{\alpha}S_{\beta}P_{\tau}$, $S_{\alpha}P_{\beta}S_{\tau}$ etc.

In section 1 several definitions are given. We call the product of operations P_{α}, S_{β} etc. a monomial (cf. below Def. 1). In section 2 we shall give a method by means of which the comparison of $P_{\delta}S_{\varepsilon}$ with other monomials is fairly simplified and unified. This method is an extension of that used in [1] or [2]. In section 3, a condition for the inequality $S_{\alpha}P_{\beta}S_{r} \leq P_{\delta}S_{\varepsilon}$ or $S_{\alpha}P_{\beta}S_{r} \leq S_{\delta}P_{\varepsilon}$ is obtained. In section 4, we shall first study the condition for the inequality $P_{\delta}S_{\varepsilon} \leq P_{\alpha}S_{\beta}P_{r}$ and next the condition for the equality $P_{\delta}S_{\varepsilon} = P_{\alpha}S_{\beta}P_{r}$.

These results are obtained without the generalized continuum hypothesis, but we have not succeeded to give without this hypothesis a condition under which the inequality $P_{\delta}S_{\epsilon} \leq S_{\alpha}P_{\beta}S_{r}$ holds. Assuming this hypothesis, we shall give a condition for the above inequality in section 5. A condition for the equality $P_{\delta}S_{\epsilon} = S_{\alpha}P_{\beta}S_{r}$ to hold is obtained without the hypothesis.

Throughout this note, the symbol $\pi_{\alpha}(\beta)$ (cf. Def. 3) plays a main rôle. In section 6, we shall consider the behaviour of the value of $\pi_{\alpha}(\beta)$, especially we shall give a conditions under which we have $\pi_{\alpha}(\beta) = \beta$, $\pi_{\alpha}(\beta) = \beta + 1$ or $\pi_{\alpha}(\beta) \ge \beta + 2$.

§1. Definitions.

1. The following definition of the operation S_{α} (resp. P_{α}) is given in [1], [2] and [3].

DEFINITION 1. Let K be any class of sets, and α an ordinal number. $S_{\alpha}(K)$ (resp. $P_{\alpha}(K)$) is the class of all sets which are expressed as the unions (resp.